In this paper we model absolute price changes of an option on the XETRA DAX index based on quote-by-quote data from the EUREX exchange. In contrast to other authors, we focus on a parameter-driven model for this purpose and use a Poisson Generalized Linear Model (GLM) with a latent AR(1) process in the mean, which accounts for autocorrelation and overdispersion in the data. Parameter estimation is carried out by Markov Chain Monte Carlo methods using the WinBUGS software. In a Bayesian context, we prove the superiority of this modelling approach compared to an ordinary Poisson-GLM and to a complex Poisson-GLM with heterogeneous variance structure (but without taking into account any autocorrelations) by using the deviance information criterion (DIC) as proposed by Spiegelhalter et al. (2002). We include a broad range of explanatory variables into our regression modelling for which we also consider interaction effects: While, according to our modelling results, the price development of the underlying, the intrinsic value of the option at the time of the trade, the number of new quotations between two price changes, the time between two price changes and the Bid- Ask spread have significant effects on the size of the price changes, this is not the case for the remaining time to maturity of the option. By giving possible interpretations of our modelling results we also provide an empirical contribution to the understanding of the microstructure of option markets.
展开▼
机译:在本文中,我们基于来自EUREX交易所的报价数据,对XETRA DAX指数期权的绝对价格变化进行建模。与其他作者相比,我们将重点放在参数驱动模型上,并使用具有潜在AR(1)过程的Poisson广义线性模型(GLM)进行均值,这说明了数据中的自相关和过度分散。使用WinBUGS软件通过Markov Chain Monte Carlo方法进行参数估计。在贝叶斯语境中,我们通过使用偏差信息准则(DIC)作为证明,证明了该建模方法相对于普通Poisson-GLM和具有异构方差结构(但不考虑任何自相关)的复杂Poisson-GLM的优越性。 Spiegelhalter等人提出。 (2002)。我们在回归模型中包含了广泛的解释变量,我们还考虑了相互作用的影响:根据我们的建模结果,标的物的价格上涨,交易时期权的内在价值,数量两个价格变动之间的新报价,两个价格变动之间的时间以及买价/卖价价差对价格变动的大小有重大影响,剩余的期权到期时间并非如此。通过对我们的建模结果进行可能的解释,我们还为理解期权市场的微观结构提供了经验性贡献。
展开▼