首页> 外文OA文献 >Multifractality and long-range dependence of asset returns: The scaling behaviour of the Markov-switching multifractal model with lognormal volatility components
【2h】

Multifractality and long-range dependence of asset returns: The scaling behaviour of the Markov-switching multifractal model with lognormal volatility components

机译:资产收益的多重离散和长期依赖性:具有对数正态波动分量的马尔可夫转换多重分形模型的尺度特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we consider daily financial data from various sources (stock market indices, foreign exchange rates and bonds) and analyze their multi-scaling properties by estimating the parameters of a Markov-switching multifractal model (MSM) with Lognormal volatility components. In order to see how well estimated models capture the temporal dependency of the empirical data, we estimate and compare (generalized) Hurst exponents for both empirical data and simulated MSM models. In general, the Lognormal MSM models generate ?apparent? long memory in good agreement with empirical scaling provided one uses sufficiently many volatility components. In comparison with a Binomial MSM specification [7], results are almost identical. This suggests that a parsimonious discrete specification is flexible enough and the gain from adopting the continuous Lognormal distribution is very limited.
机译:在本文中,我们考虑了来自各种来源(股票市场指数,汇率和债券)的每日财务数据,并通过估计具有对数正态波动率成分的马尔可夫切换多分形模型(MSM)的参数来分析其多尺度特性。为了查看估计的模型如何捕获经验数据的时间依赖性,我们针对经验数据和模拟的MSM模型估计并比较(广义)赫斯特指数。通常,对数正态MSM模型会生成“表观”信息。如果人们使用足够多的波动性成分,则其长期记忆与经验标度具有很好的一致性。与二项式MSM规范[7]相比,结果几乎相同。这表明简约的离散规格足够灵活,采用连续对数正态分布的收益非常有限。

著录项

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号