首页> 外文OA文献 >Multiclass Visual Classifier Based on Bipartite Graph Representation of Decision Tables
【2h】

Multiclass Visual Classifier Based on Bipartite Graph Representation of Decision Tables

机译:基于决策表二分图表示的多类视觉分类器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider K-class classification problem, a significant issue in machine learning or artificial intelligence. In this problem, we are given a training set of samples, where each sample is represented by a nominal-valued vector and is labeled as one of the predefined K classes. The problem asks to construct a classifier that predicts the classes of future samples with high accuracy. For K = 2, we have studied a new visual classifier named 2-class SE-graph based classifier (2-SEC) in our previous works, which is constructed as follows: We first create several decision tables from the training set and extract a bipartite graph called an SE-graph that represents the relationship between the training set and the decision tables. We draw the SE-graph as a twolayered drawing by using an edge crossing minimization technique, and the resulting drawing acts as a visual classifier. We can extend 2-SEC to K-SEC for K > 2 naturally, but this extension does not consider the relationship between classes, and thus may perform badly on some data sets. In this paper, we propose SEC-TREE classifier for K > 2, which decomposes the given K-class problem into subproblems for fewer classes. Following our philosophy, we employ edge crossing minimization technique for this decomposition. Compared to previous decomposition strategies, SEC-TREE can extract any tree as the subproblem hierarchy. In computational studies, SEC-TREE outperforms C4.5 and is competitive with SVM especially when K is large.
机译:在本文中,我们考虑了K类分类问题,这是机器学习或人工智能中的重要问题。在这个问题中,我们得到了一个训练样本集,其中每个样本都由标称值向量表示,并被标记为预定义的K类之一。这个问题要求构造一个分类器,该分类器可以高精度地预测未来样本的分类。对于K = 2,我们在先前的工作中研究了一种新的基于2级SE-graph的视觉分类器(2-SEC),其结构如下:我们首先从训练集中创建几个决策表,并提取一个决策表。称为SE图的二部图,它表示训练集和决策表之间的关系。我们使用边缘交叉最小化技术将SE图绘制为两层图,所得图用作视觉分类器。对于K> 2,我们可以自然地将2-SEC扩展为K-SEC,但是此扩展未考虑类之间的关系,因此在某些数据集上可能表现不佳。在本文中,我们针对K> 2提出SEC-TREE分类器,该分类器将给定的K类问题分解为较少类的子问题。遵循我们的理念,我们将边缘交叉最小化技术用于此分解。与以前的分解策略相比,SEC-TREE可以提取任何树作为子问题层次。在计算研究中,SEC-TREE优于C4.5,并且与SVM竞争,尤其是在K大的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号