首页> 外文OA文献 >Maximizing submodular functions under matroid constraints by evolutionary algorithms
【2h】

Maximizing submodular functions under matroid constraints by evolutionary algorithms

机译:通过进化算法在拟阵约束下最大化子模块函数

摘要

Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints, we show that the GSEMO achieves a (1 - 1/e)-approximation in expected polynomial time. For the case of monotone functions where the constraints are given by the intersection of K ≥ 2 matroids, we show that the (1 + 1) EA achieves a (1/k + δ)-approximation in expected polynomial time for any constant δ > 0. Turning to nonmonotone symmetric submodular functions with k ≥ 1 matroid intersection constraints, we show that the GSEMO achieves a 1/((k + 2)(1 + ε))-approximation in expected time O(n(k + 6)log(n)/ε.
机译:许多组合优化问题具有次模块化的基本目标函数。经典目标是在给定的约束条件下为给定的子模函数f找到一个好的解决方案。在本文中,我们研究了称为(1 +1)EA的简单单目标进化算法和称为GSEMO的多目标进化算法的运行时间,直到它们获得了对子模函数的良好逼近。对于单调亚模函数和统一基数约束的情况,我们表明GSEMO在期望的多项式时间内达到了(1/1 / e)逼近。对于单调函数的情况,其中约束是由K≥2个拟阵的交点给出的,我们证明了(1 + 1)EA对于任何常数δ>都可以在期望的多项式时间内达到(1 / k +δ)逼近。 0.转向具有k≥1个拟阵交点约束的非单调对称子模函数,我们证明GSEMO在预期时间O(n(k + 6)中达到了(/((k + 2)(1 +ε)))逼近。 log(n)/ε。

著录项

  • 作者

    Friedrich T.; Neumann F.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号