首页> 外文OA文献 >Self-adaptive differential evolution algorithm applied to water distribution system optimization
【2h】

Self-adaptive differential evolution algorithm applied to water distribution system optimization

机译:自适应差分进化算法在配水系统优化中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Differential evolution (DE) is a relatively new technique that has recently been used to optimize the design for water distribution systems (WDSs). Several parameters need to be determined in the use of DE, including population size, N; mutation weighting factor, F; crossover rate, CR, and a particular mutation strategy. It has been demonstrated that the search behavior of DE is especially sensitive to the F and CR values. These parameters need to be fine-tuned for different optimization problems because they are generally problem-dependent. A self-adaptive differential evolution (SADE) algorithm is proposed to optimize the design of WDSs. Three new contributions are included in the proposed SADE algorithm: (1) instead of pre-specification, the control parameters of F and CR are encoded into the chromosome of the SADE algorithm, and hence are adapted by means of evolution; (2) F and CR values of the SADE algorithm apply at the individual level rather than the generational level normally used by the traditional DE algorithm; and (3) a new convergence criterion is proposed for the SADE algorithm as the termination condition, thereby avoiding pre-specifying a fixed number of generations or computational budget to terminate the evolution. Four WDS case studies have been used to demonstrate the effectiveness of the proposed SADE algorithm. The results show that the proposed algorithm exhibits good performance in terms of solution quality and efficiency. The advantage of the proposed SADE algorithm is that it reduces the effort required to fine-tune algorithm parameter values.
机译:差异进化(DE)是一项相对较新的技术,最近已用于优化水分配系统(WDS)的设计。使用DE时需要确定几个参数,包括人口数N;突变加权因子F;交叉率,CR和特定的突变策略。已经证明,DE的搜索行为对F和CR值特别敏感。这些参数需要针对不同的优化问题进行微调,因为它们通常取决于问题。提出了一种自适应差分进化算法(SADE)来优化WDS的设计。提出的SADE算法包括三个新的贡献:(1)代替预先指定,将F和CR的控制参数编码到SADE算法的染色体中,从而通过进化进行适应; (2)SADE算法的F和CR值适用于个人级别,而不是传统DE算法通常使用的世代级别; (3)提出了一种新的收敛准则作为终止条件,从而避免了预先指定固定数量的世代或计算预算来终止进化。四个WDS案例研究已被用来证明所提出的SADE算法的有效性。结果表明,该算法在解决方案质量和效率上均表现出良好的性能。所提出的SADE算法的优点在于,它减少了微调算法参数值所需的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号