首页> 外文OA文献 >Using system response functions of liquid pipelines for leak and blockage detection.
【2h】

Using system response functions of liquid pipelines for leak and blockage detection.

机译:使用液体管道的系统响应功能进行泄漏和堵塞检测。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two new methods of leak and blockage detection in pipelines using fluid transients are developed in this thesis. Injection of a fluid transient (a pressure variation, the input) and measurement of the subsequent response (the output) provide information concerning the state of a pipeline through the system response function. The system response function exists in two forms, the impulse response function in the time domain and the frequency response function in the frequency domain. Provided that the system is unchanged, the response function does not change from one test to the next even though the injected transient signals may be different. A procedure that saves many hours over previous methods was developed for extracting frequency response information from experimental data. The procedure was verified both numerically and experimentally. It uses the linear time-invariant system equation. The approximation of linearity was tested by comparing calculations using the linear transfer matrix model to those of the nonlinear method of characteristics. The system response function allows direct comparisons of the information content of transient traces. Events that create sharp variations in time were shown to have transient signals with the greatest information content. For this reason, transients generated by fast, acting electronic solenoid valves are preferable to slower transients from manual closures or pump trips. A variety of signals were used to determine their effect on the information content of the system response. This investigation includes the use of step, pulse and pseudo-random binary signals. The use of pseudo-random binary signals was shown to provide the same information as a discrete signal that is many times its magnitude, which is attractive when system damage is of concern or the amplitude of an injected transient is limited for any reason. A specialised solenoid valve was designed and constructed as part of this research to generate pseudo-random binary signals in a laboratory pipe. Two new methods of leak and blockage detection are developed in this thesis and these methods do not require the use of an accurate simulation model or a leak-free benchmark. Knowledge of the pipe topology, flow and roughness values, or the role of unsteady friction on the transient event is unnecessary. Leaks and blockages induce a non-uniform pattern on the peaks of the frequency response function and the properties of this pattern al10w the accurate location of the problem. In the time domain, leaks and blockages create additional reflections in the impulse response function. The arrival times of these reflections can be used to locate the fault. Both methods have been validated using numerical and experimental results. The methods were tested under both low and high flow conditions, and a procedure for applying the methods in complex pipeline networks was developed. The time domain method can detect multiple leaks and discrete blockages. The frequency-domain technique provides a higher degree of noise tolerance but is sensitive to system configuration and requires a large bandwidth in the injected signal. In comparison, the time domain technique does not have these limitations and is more versatile; it is usually the better technique. The combination of methods provides an attractive alternative for leak and blockage detection and quantification.
机译:本文提出了两种利用流体瞬态检测管道泄漏和堵塞的新方法。流体瞬变的注入(压力变化,输入)和后续响应的测量(输出)通过系统响应功能提供有关管道状态的信息。系统响应函数以两种形式存在,即时域的脉冲响应函数和频域的频率响应函数。如果系统不变,则即使注入的瞬态信号可能不同,响应功能也不会从一项测试更改为另一项测试。为了从实验数据中提取频率响应信息,开发了一种比以前的方法节省许多时间的程序。该程序已通过数值和实验验证。它使用线性时不变系统方程。通过比较使用线性传递矩阵模型的计算结果与非线性特征方法的计算结果,测试了线性近似性。系统响应功能允许直接比较瞬态轨迹的信息内容。结果表明,时间变化剧烈的事件具有具有最大信息量的瞬态信号。因此,由快速作用的电磁阀产生的瞬变比由手动关闭或泵跳闸引起的较慢的瞬变更可取。使用各种信号来确定它们对系统响应信息内容的影响。该研究包括使用阶跃,脉冲和伪随机二进制信号。伪随机二进制信号的使用显示了与离散信号相同的信息,其幅度是其数量级的许多倍,当考虑到系统损坏或由于任何原因而限制了注入瞬变的幅度时,这种方法很有吸引力。作为本研究的一部分,设计并构造了一种专用电磁阀,以在实验室管道中生成伪随机二进制信号。本文提出了两种新的泄漏和堵塞检测方法,这些方法不需要使用精确的仿真模型或无泄漏基准。无需了解管道拓扑,流量和粗糙度值或非稳态摩擦在瞬态事件中的作用。泄漏和阻塞会在频率响应函数的峰值上引起不均匀的模式,并且该模式的特性会导致问题的准确定位。在时域中,泄漏和阻塞会在脉冲响应函数中产生其他反射。这些反射的到达时间可以用来定位故障。两种方法均已使用数值和实验结果进行了验证。在低流量和高流量条件下对这些方法进行了测试,并开发了将该方法应用于复杂管道网络的程序。时域方法可以检测到多个泄漏和离散阻塞。频域技术提供了较高的噪声容忍度,但对系统配置敏感,并且在注入的信号中需要较大的带宽。相比之下,时域技术没有这些限制,功能更广泛。通常是更好的技术。方法的组合为泄漏和堵塞检测与定量提供了有吸引力的替代方法。

著录项

  • 作者

    Lee Pedro Jose;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号