首页> 外文OA文献 >Globalization Techniques for Newton-Krylov Methods and Applications to the Fully Coupled Solution of the Navier-Stokes Equations
【2h】

Globalization Techniques for Newton-Krylov Methods and Applications to the Fully Coupled Solution of the Navier-Stokes Equations

机译:Newton-Krylov方法的全局化方法及其在Navier-stokes方程完全耦合解中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A Newton-Krylov method is an implementation of Newtonu27s method in which a Krylov subspace method is used to solve approximately the linear subproblems that determine Newton steps. To enhance robustness when good initial approximate solutions are not available, these methods are usually globalized, i.e., augmented with auxiliary procedures (globalizations) that improve the likelihood of convergence from a starting point that is not near a solution. In recent years, globalized Newton-Krylov methods have been used increasingly for the fully coupled solution of large-scale problems. In this paper, we review several representative globalizations, discuss their properties, and report on a numerical study aimed at evaluating their relative merits on large-scale two- and three-dimensional problems involving the steady-state Navier-Stokes equations.
机译:Newton-Krylov方法是Newton u27s方法的实现,其中Krylov子空间方法用于近似求解确定Newton步骤的线性子问题。为了在没有好的初始近似解可用时提高鲁棒性,通常将这些方法全球化,即,增加辅助过程(全球化),以提高从接近解的起点收敛的可能性。近年来,全球化的Newton-Krylov方法已越来越多地用于大规模问题的完全耦合解决方案。在本文中,我们回顾了几个具有代表性的全球化,讨论了它们的性质,并进行了一项旨在评估它们在涉及稳态Navier-Stokes方程的大规模二维和三维问题上的相对优点的数值研究报告。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号