首页> 外文OA文献 >Lidar sampling for large-area forest characterization: A review
【2h】

Lidar sampling for large-area forest characterization: A review

机译:用于大面积森林特征的激光雷达取样:综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to use digital remotely sensed data for forest inventory is often limited by the nature of the measures, which, with the exception of multi-angular or stereo observations, are largely insensitive to vertically distributed attributes. As a result, empirical estimates are typically made to characterize attributes such as height, volume, or biomass, with known asymptotic relationships as signal saturation occurs. Lidar (light detection and ranging) has emerged as a robust means to collect and subsequently characterize vertically distributed attributes. Lidar has been established as an appropriate data source for forest inventory purposes; however, large area monitoring and mapping activities with lidar remain challenging due to the logistics, costs, and data volumes involved.The use of lidar as a sampling tool for large-area estimation may mitigate some or all of these problems. A number of factors drive, and are common to, the use of airborne profiling, airborne scanning, and spaceborne lidar systems as sampling tools for measuring and monitoring forest resources across areas that range in size from tens of thousands to millions of square kilometers. In this communication, we present the case for lidar sampling as a means to enable timely and robust large-area characterizations. We briefly outline the nature of different lidar systems and data, followed by the theoretical and statistical underpinnings for lidar sampling. Current applications are presented and the future potential of using lidar in an integrated sampling framework for large area ecosystem characterization and monitoring is presented. We also include recommendations regarding statistics, lidar sampling schemes, applications (including data integration and stratification), and subsequent information generation. © 2012.
机译:使用数字遥感数据进行森林资源清查的能力通常受到措施性质的限制,这些措施除多角度或立体观测外,对垂直分布的属性不敏感。结果,通常进行经验估计以表征诸如高度,体积或生物量之类的属性,并随着信号饱和发生而具有已知的渐近关系。激光雷达(光检测和测距)已经成为一种强大的手段,可以收集并表征垂直分布的属性。激光雷达已被确定为用于森林清查目的的适当数据源;但是,由于涉及的物流,成本和数据量大,使用激光雷达进行大面积监视和制图活动仍然具有挑战性。使用激光雷达作为大面积估算的采样工具可以缓解其中的部分或全部问题。许多因素驱动着机载轮廓分析,机载扫描和星载激光雷达系统的使用,这是在范围从数万到数百万平方公里不等的区域中测量和监视森林资源的采样工具。在本通讯中,我们介绍了激光雷达采样的情况,以此作为实现及时而强大的大面积表征的一种手段。我们简要概述了不同激光雷达系统和数据的性质,然后概述了激光雷达采样的理论和统计基础。介绍了当前的应用,并介绍了在集成采样框架中使用激光雷达进行大面积生态系统表征和监测的未来潜力。我们还提供有关统计数据,激光雷达采样方案,应用程序(包括数据集成和分层)以及后续信息生成的建议。 ©2012。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号