首页> 外文OA文献 >Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration
【2h】

Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

机译:通过数值积分计算有限差分微磁模拟的退磁张量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii)
机译:在计算微磁学中常用的有限差分法中,通常将消磁场计算为磁化矢量场与消磁张量的卷积,该张量描述具有恒定磁化的立方形单元的静磁场。可以使用去磁张量的解析表达式,但是在远离立方晶格的距离处,该解析表达式的数值评估可能非常不准确。由于这种大距离误差,数值软件包(如OOMMF)在靠近始发单元的距离处使用显式公式计算退磁张量,但在距始发单元的距离较远的地方,必须使用基于渐近展开的公式。在这项工作中,我们描述了一种通过使用稀疏网格积分方案对退磁张量项中的多维积分进行数值评估来计算退磁场的方法。该方法提高了距原点中间距离的计算精度。我们计算并报告(i)最适合短距离的精确张量表达式的数值评估,(ii)最适合于大距离的渐近展开和(iii)基于数值积分的新方法的准确性,并且该准确性在中间距离方面优于方法(i)和(ii)。对于这三种方法,我们都将精度和执行时间的测量结果显示为距离的函数,用于使用单精度(4字节)和双精度(8字节)浮点算法的计算。我们为方案的阶数选择和数值积分方法(iii)的积分系数提供建议

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号