Two computational studies are presented in this paper. First, the Potsdam Propeller Test Case which is used to demonstrate the capabilities of mass transfer cavitation models, more precisely the model by Sauer and Schnerr, in tackling the problem of marine propeller cavitation. It is shown that the extents of the predicted cavitation regions agree well with the experiment but suffer from the fact that the tip vortices and the associated low pressure regions are under resolved when URANS is utilised. Next, preliminary results from the study of cavitation noise modelling attempt are presented for a NACA 0009 section, used as a simplified representation of a propeller blade. Large Eddy Simulation and Ffowcs Williams-Hawkings porous acoustic analogy are used in order to estimate the cavitation-induced noise. Results indicate that the discussed approach provides the means for identifying low-frequency noise generation mechanisms in the flow, yielding sound pressure levels of the order of 40 dB re 20 mPa, but does not allow for finescale bubble dynamics to be resolved. One may conclude that the discussed approach is a viable option to predict large parts of marine propeller noise spectra but further work is needed in order to account for the high frequency components.
展开▼
机译:本文介绍了两个计算研究。首先,波茨坦螺旋桨测试用例用于证明传质空化模型的功能,更确切地说是Sauer和Schnerr的模型在解决船用螺旋桨空化问题上的能力。结果表明,预测的空化区域的范围与实验吻合得很好,但是当使用URANS时,尖端涡旋和相关的低压区域将无法解决。接下来,给出了针对NACA 0009部分的空化噪声建模尝试研究的初步结果,该部分用作螺旋桨叶片的简化表示。使用大涡模拟和Ffowcs Williams-Hawkings多孔声模拟法来估计空化引起的噪声。结果表明,所讨论的方法提供了一种方法,用于识别气流中的低频噪声生成机制,产生的声压级约为40 dB re 20 mPa,但无法解决细小气泡动力学问题。可能会得出结论,所讨论的方法是预测船用螺旋桨噪声谱的大部分的可行选择,但需要做进一步的工作才能考虑到高频分量。
展开▼