首页> 外文OA文献 >Portfolio based VaR model: a combination of extreme valuetheory (EVT) and dynamic conditional correlation (DCC)model
【2h】

Portfolio based VaR model: a combination of extreme valuetheory (EVT) and dynamic conditional correlation (DCC)model

机译:基于投资组合的VaR模型:极端价值的组合理论(EVT)和动态条件相关(DCC)模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis fills a gap in the risk management literature and expands the understanding of the portfolio value at risk (VaR) by providing a theoretical market risk measurement of a portfolio (called “GEV-DCC model”), which combines the tail dynamic conditional correlation (tail-DCC) and extreme value theory. According to the spirit of VaR, the tail distribution is more important than the entire distribution, as well as the correlation in the tail area between various assets. The main advantage of this approach is the increase of accuracy in the parameter estimation of the tail distribution and more consistent correlation measurement for VaR. The results from this method are compared with four other conventional VaR approaches; GARCH model, RiskMetrics, stochastic volatility, and historical simulation. Furthermore, three quality measures are applied to evaluate the suitability, conservativeness, and magnitude of loss of the forecasted VaR, which offer more information from the forecasted VaR pattern.Applying 16 major equity index returns from developed and emerging markets, this study finds that the GEV-DCC model offers a more accurate coverage across the blocks in the three hypothetical portfolios (the developed equity markets, Asian and Latin American equity markets) compared with the four competing models. The uncovered rates of the GEV-DCC model with the 5-day block approach are generally close to the given probability (?) set in the VaR calculation. These consistent results can also be found in the robustness test with the shorter forecasting period. In the quality checks, the GEV-DCC presents a relatively stable pattern in the daily and 10-day VaR results. In addition, the GEV-DCC model also provides satisfactory results in the conservativeness and potential loss tests although no direct evidence indicates that it delivers the best result in these two checks. We also find significant differences between the original DCC and the tail-DCC. This evidence shows that the correlations between equity markets in the left tail are significantly higher than the ones in the right tail, and there are significant changes (generally rising) in the tail-DCC patterns around the period of financial crisis in the third quarter of 2008.The results from this study could potentially provide a critical reference for investors in measuring or managing the market risk.
机译:本论文通过提供组合了尾部动态条件相关性的理论上的投资组合市场风险度量(称为“ GEV-DCC模型”),填补了风险管理文献中的空白,并扩展了对投资组合风险价值(VaR)的理解。 (tail-DCC)和极值理论。根据VaR的精神,尾部分布比整个分布以及各种资产之间的尾部区域中的相关性更重要。这种方法的主要优点是提高了尾巴分布的参数估计的准确性,并使VaR的相关性测量更加一致。将该方法的结果与其他四种常规VaR方法进行了比较。 GARCH模型,RiskMetrics,随机波动率和历史模拟。此外,我们采用了三种质量度量来评估预测VaR的适用性,保守性和损失幅度,这从预测VaR模式中提供了更多信息。运用发达和新兴市场的16种主要股指回报,本研究发现与四个竞争模型相比,GEV-DCC模型在三个假设的投资组合(发达的股票市场,亚洲和拉丁美洲的股票市场)中的各个区块提供了更准确的覆盖率。使用5天封闭法的GEV-DCC模型的未发现速率通常接近于VaR计算中设置的给定概率(?)。这些一致的结果也可以在具有较短预测周期的稳健性测试中找到。在质量检查中,GEV-DCC在每日和10天的VaR结果中呈现出相对稳定的模式。此外,GEV-DCC模型在保守性和潜在损失测试中也提供了令人满意的结果,尽管没有直接证据表明它在这两项检查中提供了最佳结果。我们还发现原始DCC和尾部DCC之间存在显着差异。该证据表明,左尾的股票市场之间的相关性显着高于右尾的股票市场,并且在金融危机第三季度末尾的DCC模式发生了显着变化(通常上升)。 2008年。这项研究的结果可能为投资者衡量或管理市场风险提供重要参考。

著录项

  • 作者

    Wang Jo-Yu;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号