首页> 外文OA文献 >Using Hidden Markov Models for Iterative Non-intrusive Appliance Monitoring
【2h】

Using Hidden Markov Models for Iterative Non-intrusive Appliance Monitoring

机译:使用隐马尔可夫模型进行迭代非侵入式设备监控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-intrusive appliance load monitoring is the process of breaking down a household’s total electricity consumption into its contributing appliances. In this paper we propose an approach by which individual appliances are iteratively separated from the aggregate load. Our approach does not require training data to be collected by sub-metering individual appliances. Instead, prior models of general appliance types are tuned to specific appliance instances using only signatures extracted from the aggregate load. The tuned appliance models are used to estimate each appliance’s load, which is subsequently subtracted from the aggregate load. We evaluate our approach using the REDD data set, and show that it can disaggregate 35% of a typical household’s total energy consumption to an accuracy of 83% by only disaggregating three of its highest energy consuming appliances.
机译:非侵入式设备负载监控是将家庭的总用电量分解成其用电设备的过程。在本文中,我们提出了一种方法,通过该方法可将各个设备与总负载迭代地分离。我们的方法不需要通过对各个设备进行计量来收集培训数据。相反,仅使用从汇总负载中提取的签名将常规设备类型的先前模型调整为特定设备实例。调整后的设备模型用于估计每个设备的负载,然后从总负载中减去该负载。我们使用REDD数据集评估了我们的方法,结果表明,仅分解三个能耗最高的设备,它就可以将一个典型家庭的总能耗的35%分解到83%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号