首页> 外文OA文献 >Forecasting the weekly time-varying beta of UK firms:comparison between GARCH models vs Kalman filtermethod
【2h】

Forecasting the weekly time-varying beta of UK firms:comparison between GARCH models vs Kalman filtermethod

机译:预测英国公司的每周时间变化beta:GaRCH模型与卡尔曼滤波器的比较方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper investigates the forecasting ability of four different GARCH models and the Kalman filtermethod. The four GARCH models applied are the bivariate GARCH, BEKK GARCH, GARCH-GJRand the GARCH-X model. The paper also compares the forecasting ability of the non-GARCH modelthe Kalman method. Forecast errors based on twenty UK company weekly stock return (based on timevarybeta) forecasts are employed to evaluate out-of-sample forecasting ability of both GARCH modelsand Kalman method. Measures of forecast errors overwhelmingly support the Kalman filter approach.Among the GARCH models both GJR and GARCH-X models appear to provide somewhat moreaccurate forecasts than the bivariate GARCH model.
机译:本文研究了四种不同的GARCH模型和Kalman滤波方法的预测能力。应用的四个GARCH模型是双变量GARCH,BEKK GARCH,GARCH-GJR和GARCH-X模型。本文还比较了非GARCH模型的预测能力-卡尔曼方法。基于二十个英国公司每周股票收益(基于timevarybeta)预测的预测误差用于评估GARCH模型和Kalman方法的样本外预测能力。预测误差的度量绝对支持卡尔曼滤波方法。在GARCH模型中,GJR和GARCH-X模型似乎都比双变量GARCH模型提供了更准确的预测。

著录项

  • 作者

    Choudhry Taufiq; Wu Hao;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号