首页> 外文OA文献 >A Review of Codebook Models in Patch-Based Visual Object Recognition
【2h】

A Review of Codebook Models in Patch-Based Visual Object Recognition

机译:基于补丁的视觉目标识别中的码本模型综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods.
机译:基于密码本模型的方法虽然忽略了视觉上的任何结构方面,但仍提供了当前数据集的最新性能。视觉代码簿的关键作用是提供一种将直方图空间中的低级特征映射到固定长度向量的方法,可以将标准分类器直接应用于该向量。这种视觉代码簿的判别能力决定了代码簿模型的质量,而代码簿的大小控制着模型的复杂性。因此,码本的构建是重要的步骤,通常通过聚类分析来完成。但是,聚类是一种在分布中保留高密度区域的过程,因此得出的代码本不需要具有判别属性。这也被认为是此类系统的计算瓶颈。在我们最近的工作中,我们提出了一种资源分配码本,以便在一次通过的设计过程中构造一个可区分的码本,在大大减少了计算时间的情况下,它比传统方法略胜一筹。在这篇综述中,我们调查了过去十年中提出的几种方法,这些方法使用了特征检测器,描述符,码本构造方案,识别对象的分类器选择以及用于评估所提出方法的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号