首页> 外文OA文献 >Synthesis of transition metal nitrides and silicon based ternary nitrides
【2h】

Synthesis of transition metal nitrides and silicon based ternary nitrides

机译:过渡金属氮化物和硅基三元氮化物的合成

摘要

Solution phase ammonolysis and sol-gel techniques that produce polymeric metal-amide precursors are of growing interest in the synthesis of nitride materials, which result from the thermal decomposition of the polymer. They can be used to control composition and to produce a large number of useful morphologies such as nanoparticles, films, monoliths, aerogels, and materials with large surface area such as foams. The synthesis of nitride materials using ammonolysis of metal amides and chlorides has so far largely focused on producing powders for applications such as catalysis, or thin films by chemical vapour deposition and related techniques.In this thesis, formation of tantalum and molybdenum nitride nanoparticles and metal-silicon nitride based nanocomposites have been synthesised using non-oxide precursors by solution phase ammonolysis and sol-gel methods respectively. For tantalum nitride nanoparticles Ta(NMe2)5 in THF was ammonolysed with ammonia at - 78 °C and the polymeric precursor was pyrolysed at various temperatures under ammonia. Amorphous TaN was obtained at 700 °C and below, while Ta3N5 was obtained at 800 °C under ammonia and also by re-annealing the amorphous samples at 800 °C under nitrogen. Molybdenum nitride powders were obtained by solution phase ammonolysis of MoCl5 or Mo(NMe2)4 and further annealing the polymeric precursors on different temperatures. The chloride precursor resulted in hexagonal MoNx at 500 °C, or rock salt MoNx at 700-1000 °C and mixture of both at 600 °C. The amide precursor resulted phase pure hexagonal MoNx at 600 °C and rock salt mixed with hexagonal at 1000 °C. Samples produced at 600 °C consisted mainly of nanotubes. Some decomposition to molybdenum metal was found in MoN obtained at 1000 °C from either precursor source.Co-ammonolysis of Ta(NMe2)5 or Mo(NMe2)4 with Si(NHMe)4 was carried out using sol-gel technique. Polymeric metal-silicon amide precursors were annealed at 600 or 1000 °C. The Ta/Si precursor produced amorphous nanocomposites and no phase segregation was observed even after high temperature annealing. With molybdenum the products were nanocomposites of molybdenum nitride particles, including nanotubes, supported on a silicon nitride amorphous matrix.
机译:产生聚合物金属酰胺前体的溶液相氨解和溶胶-凝胶技术越来越引起人们对氮化物材料合成的关注,这是由于聚合物的热分解所致。它们可用于控制成分并产生大量有用的形态,例如纳米颗粒,薄膜,整料,气凝胶和大表面积材料(例如泡沫)。迄今为止,利用金属酰胺和氯化物的氨解来合成氮化物材料主要集中在通过化学气相沉积和相关技术生产用于催化或薄膜等用途的粉末中。本论文中,形成了钽和氮化钼钼纳米颗粒和金属使用非氧化物前体分别通过溶液相氨解法和溶胶-凝胶法合成了基于氮化硅的纳米复合材料。对于氮化钽纳米颗粒,在-78°C下用氨将Ta(NMe2)5在THF中的氨氨化,然后将聚合前体在不同温度下于氨下热解。在700°C和以下温度下获得非晶态的TaN,而在氨气下于800°C下获得Ta3N5,并在氮气氛下于800°C下将非晶态样品重新退火。氮化钼粉末是通过MoCl5或Mo(NMe2)4的溶液相氨解并在不同温度下进一步退火聚合前体获得的。氯化物前体在500°C时生成六方MoNx,在700-1000°C时生成岩盐MoNx,并在600°C两者混合。酰胺前体在600°C下生成纯的六方相MoNx,在1000°C下与六方相混合的岩盐。在600°C下生产的样品主要由纳米管组成。从前驱体来源获得的MoN在1000°C时发现有一些分解成钼金属的现象。使用溶胶-凝胶技术将Ta(NMe2)5或Mo(NMe2)4与Si(NHMe)4共氨解。聚合金属硅酰胺前体在600或1000°C退火。 Ta / Si前体产生非晶态纳米复合材料,即使在高温退火后也未观察到相偏析。对于钼,产物​​是负载在氮化硅非晶基质上的包括纳米管的氮化钼颗粒的纳米复合材料。

著录项

  • 作者

    Shah Syed Imran Ullah;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号