首页> 外文OA文献 >INDIGO-DATA CLOUD EC project: A study case applied to one of the EMSO Research Infrastructure Deep sea Observatories
【2h】

INDIGO-DATA CLOUD EC project: A study case applied to one of the EMSO Research Infrastructure Deep sea Observatories

机译:INDIGO-DaTa CLOUD EC项目:一个研究案例适用于EmsO研究基础设施深海观测站之一

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Our case study is a pilot experience used to describe some of the activities performed by INGV in the frame of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water column Observatory). EMSOis composed of several deep-seafloor and water column observatories, deployed at key sites in the European waters, thus forming a widely distributed pan-European infrastructure. We consider data collected by the NEMO-SN1observatory, one of the EMSO nodes used for geohazard monitoring, located in the Western Ionian Sea in proximity of Etna volcano. In this poster we will focus on the Researcher and Data Manager user-types. The INGV EMSOcommunity uses MOIST (Multidisciplinary Oceanic Information System) for storing and visualizing data and metadata produced by NEMO-SN1 Observatory. Data quality control and analysis often requires several steps that include theuse of different scripts and software developed in-house, commercials tools (Matlab, R-Studio....), and proprietary tools available from sensor manufacturers. In this chain of events, some operations might require a relevant computingpower. Data are retrieved from MOIST through remote mount (via samba or sshfs). Analysis might also be performed on datasets that are produced by other partners and remote access and sharing of these data is needed. At present,in the majority of cases, software is run on individual researchers’ Pcs. The first test for the implementation of our use-case within INDIGO-DataCloud included running an R script on a cloud environment and exploiting data sharingcapabilities. The input to this script is data coming from the analysis of Short Duration seismic Events (SDE) automatically detected on the seismometer continuous time series. The script calculates a cumulate energy in themeasurement period (8 months) and compares this cumulate curve to N random cumulates calculated by mixing the energy values at the fixed observed times where SDE are detected. Within the INDIGO project (WP2) we defined theusers requirements and we identified some useful INDIGO solutions. In particular we are testing Ophidia, a software stack for big data analytics (Fiore et al., 2013), and the execution of R jobs in docker containers described by TOSCAtemplates through INDIGO Orchestrator and Apache Mesos. This poster illustrates our case study, the users’ requirements and the INDIGO solutions that we have been testing so far and would like to test in the near future.
机译:我们的案例研究是一个试点经验,用于描述INGV在欧洲研究基础设施EMSO(欧洲多学科海底和水柱天文台)框架内进行的活动。 EMSOis由数个深海和水柱观测站组成,部署在欧洲水域的关键地点,从而形成了分布广泛的泛欧洲基础设施。我们考虑由NEMO-SN1天文台收集的数据,NEMO-SN1天文台是用于地质灾害监测的EMSO节点之一,位于埃特纳火山西部的爱奥尼亚海西部。在此海报中,我们将重点介绍Researcher和Data Manager用户类型。 INGV EMSOmunity使用MOIST(多学科海洋信息系统)来存储和可视化NEMO-SN1天文台产生的数据和元数据。数据质量控制和分析通常需要几个步骤,包括使用内部开发的不同脚本和软件,商业工具(Matlab,R-Studio ....)以及传感器制造商提供的专有工具。在这一系列事件中,某些操作可能需要相关的计算能力。通过远程挂载(通过samba或sshfs)从MOIST检索数据。还可以对其他合作伙伴产生的数据集进行分析,并且需要远程访问和共享这些数据。目前,在大多数情况下,软件是在个人研究人员的个人计算机上运行的。在INDIGO-DataCloud中实现我们用例的第一个测试包括在云环境中运行R脚本并利用数据共享功能。该脚本的输入是来自在地震仪连续时间序列上自动检测到的短时地震事件(SDE)分析的数据。该脚本计算了测量期间(8个月)中的累积能量,并将该累积曲线与N次随机累积值进行比较,这些随机累积值是通过混合固定观测时间检测到SDE的能量值而计算得出的。在INDIGO项目(WP2)中,我们定义了用户需求,并确定了一些有用的INDIGO解决方案。特别是,我们正在测试Ophidia(用于大数据分析的软件堆栈)(Fiore等人,2013),并通过INDIGO Orchestrator和Apache Mesos在TOSCAtemplates描述的Docker容器中执行R作业。这张海报说明了我们的案例研究,用户要求以及我们到目前为止一直在测试的,并希望在不久的将来进行测试的INDIGO解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号