首页> 外文OA文献 >Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter
【2h】

Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter

机译:利用卡尔曼滤波器将激光雷达反演大气反向散射和消光 - 反向散射比

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A first inversion of the backscatter profile and extinction-to-backscatter ratio from pulsed elastic-backscatter lidar returns is treated by means of an extended Kalman filter (EKF). The EKF approach enables one to overcome the intrinsic limitations of standard straightforward nonmemory procedures such as the slope method, exponential curve fitting, and the backward inversion algorithm. Whereas those procedures are inherently not adaptable because independent inversions are performed for each return signal and neither the statistics of the signals nor a priori uncertainties (e.g., boundary calibrations) are taken into account, in the case of the Kalman filter the filter updates itself because it is weighted by the imbalance between the a priori estimates of the optical parameters (i.e., past inversions) and the new estimates based on a minimum-variance criterion, as long as there are different lidar returns. Calibration errors and initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate atmospheric stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables one to retrieve the optical parameters as time-range-dependent functions and hence to track the atmospheric evolution; the performance of this approach is limited only by the quality and availability of the a priori information and the accuracy of the atmospheric model used. The study ends with an encouraging practical inversion of a live scene measured at the Nd:YAG elastic-backscatter lidar station at our premises at the Polytechnic University of Catalonia, Barcelona.
机译:借助扩展的卡尔曼滤波器(EKF)处理了脉冲弹性后向散射激光雷达回波的后向散射轮廓和消光与后向散射比的第一次反转。 EKF方法使人们能够克服标准简单的非存储过程的固有局限性,例如坡度法,指数曲线拟合和反向算法。那些程序本质上是不适应的,因为对于每个返回信号都执行独立的求逆,并且既不考虑信号的统计量也不考虑先验的不确定性(例如边界校准),在卡尔曼滤波器的情况下,滤波器会更新自身,因为只要存在不同的激光雷达返回,光学参数的先验估计(即过去的反演)与基于最小方差准则的新估计之间的不平衡就可以对其进行加权。校准误差和初始化不确定性也可以被吸收。研究从反演问题的公式化和合适的大气随机模型开始。基于广泛的模拟和现实条件,结果表明,EKF方法使人们能够将光学参数作为与时间范围相关的函数进行检索,从而跟踪大气的演化。这种方法的性能仅受先验信息的质量和可用性以及所用大气模型的准确性的限制。这项研究以令人鼓舞的实际场景的倒置结尾,该场景在我们位于巴塞罗那加泰罗尼亚理工大学的Nd:YAG弹性后向散射激光雷达站上测得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号