首页> 外文OA文献 >A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows
【2h】

A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows

机译:求解非静力分层流欧拉方程的变分多尺度稳定有限元方法

摘要

We present a compressible version of the variational multiscale stabilization (VMS) method applied to the finite element (FE) solution of the Euler equations for nonhydrostatic stratified flows. This paper is meant to verify how the algorithm performs when solving problems in the framework of nonhydrostatic atmospheric dynamics. This effort is justified by the previously observed good performance of VMS and by the advantages that a compact Galerkin formulation offers on massively parallel architectures – a paradigm for both computational fluid dynamics (CFD) and numerical weather prediction (NWP) practitioners. We also propose a simple technique to construct a well-balanced approximation of the dominant hydrostatics that, if not properly discretized, may cause unacceptable vertical oscillations. This is a relevant problem in NWP, especially in the proximity of steep topography. To evaluate the performance of the method for stratified environments, six standard 2D and two 3D test cases are selected. Of these, two admit a semi-analytic solution, while the remaining six are non-steady and non-linear thermal problems with dominant buoyancy effects that challenge the algorithm in terms of stability.
机译:我们提出了变分多尺度稳定(VMS)方法的可压缩版本,该方法适用于非静液压分层流Euler方程的有限元(FE)解。本文旨在验证该算法在解决非静压大气动力学框架中的问题时如何执行。先前观察到的VMS的良好性能以及紧凑的Galerkin公式在大规模并行体系结构上提供的优势(这种计算流体力学(CFD)和数值天气预报(NWP)专业人员的范例)证明了这一努力的合理性。我们还提出了一种简单的技术来构造主要流体静力学的平衡良好的近似值,如果不能适当离散,则可能会导致不可接受的垂直振动。这是NWP中的一个相关问题,尤其是在陡峭地形附近。为了评估该方法在分层环境中的性能,选择了六个标准2D和两个3D测试用例。其中,有两个采用半解析解,而其余六个是具有稳定浮力效应的非稳态和非线性热问题,这些问题对算法的稳定性提出了挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号