首页> 外文OA文献 >Application of a Galerkin finite element scheme to atmospheric buoyant and gravity driven flows
【2h】

Application of a Galerkin finite element scheme to atmospheric buoyant and gravity driven flows

机译:Galerkin有限元方法在大气浮力和重力驱动流动中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The application of a new finite element (FE) technique for the solution of stratified,\udnon-hydrostatic, low-Mach number flows is introduced in the context of mesoscale atmospheric modeling. In this framework, a Compressible Variational Multiscale (VMS-C)\udfinite element algorithm to solve the conservative form of the Euler equations coupled to the conservation of potential temperature was developed. This methodology is new in the fields of Computational Fluid Dynamics for compressible flows and in Numerical Weather Prediction (NWP), and we mean to show its ability to maintain stability in the solution of thermal, gravity-driven flows in a stratified environment. This effort is justified by the advantages offered by a Galerkin finite element algorithm when massive parallel efficiency is a constraint, which is indeed becoming the paradigm for both CFD and NWP practitioners. The algorithm is validated against the standard test cases specifically designed to test the dynamical core of new atmospheric models. In the context of buoyant and gravity flows three tests are selected among those presented in the literature: the warm rising smooth anomaly, and two versions of the density current evolution from a cold disturbance defined\udby different initial conditions. The reference quantitative and qualitative values are taken from the literature and from the output obtained with the Weather Research and Forecasting model (WRF-ARW), a state-of-the-art research NWP model.
机译:在中尺度大气模拟的背景下,介绍了一种新的有限元(FE)技术在分层,\ udnon静液压,低马赫数流解中的应用。在此框架下,开发了可压缩变分多尺度(VMS-C)\有限元算法,以求解与势能守恒相关的Euler方程的保守形式。这种方法在可压缩流的计算流体动力学和数值天气预报(NWP)领域是新的,我们的意思是要显示出它在分层环境中在重力驱动的热流解决方案中保持稳定性的能力。当大量并行效率成为约束时,Galerkin有限元算法提供的优势证明了这一努力的正确性,而这实际上已成为CFD和NWP从业人员的范例。该算法针对专门设计用于测试新大气模型动力核心的标准测试用例进行了验证。在浮力和重力流的背景下,从文献中进行了三个测试:暖上升平滑异常,以及由不同初始条件定义的冷扰动演化出的两种密度电流版本。参考定量和定性值是从文献中以及从天气研究和预报模型(WRF-ARW)(一种最新的研究NWP模型)获得的输出中得出的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号