首页> 外文OA文献 >Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model
【2h】

Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model

机译:考虑到大气不确定性改善了冰海模型中smOs海冰厚度数据的顺序同化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The sensitivity of assimilating sea ice thickness data to uncertainty in atmospheric forcing fields is examined using ensemble-based data assimilation experiments with the Massachusetts Institute of Technology General Circulation Model (MITgcm) in the Arctic Ocean during November 2011–January 2012 and the Met Office (UKMO) ensemble atmospheric forecasts. The assimilation system is based on a local singular evolutive interpolated Kalman (LSEIK) filter. It combines sea ice thickness data derived from the European Space Agency’s (ESA) Soil Moisture Ocean Salinity (SMOS) satellite and Special Sensor Microwave Imager/Sounder (SSMIS) sea ice concentration data with the numerical model. The effect of representing atmospheric uncertainty implicit in the ensemble forcing is assessed by three different assimilation experiments. The first two experiments use a single deterministic forcing dataset and a different forgetting factor to inflate the ensemble spread. The third experiment uses 23 members of the UKMO atmospheric ensemble prediction system. It avoids additional ensemble inflation and is hence easier to implement. As expected, the model-data misfits are substantially reduced in all three experiments, but with the ensemble forcing the errors in the forecasts of sea ice concentration and thickness are smaller compared to the experiments with deterministic forcing. This is most likely because the ensemble forcing results in a more plausible spread of the model state ensemble, which represents model uncertainty and produces a better forecast.
机译:使用2011年11月至2012年1月在北冰洋的麻省理工学院总循环模型(MITgcm)进行的基于集合的数据同化实验,研究了吸收海冰厚度数据对大气强迫场不确定性的敏感性。 UKMO)整体大气预报。同化系统基于局部奇异演化内插卡尔曼(LSEIK)滤波器。它结合了从欧洲航天局(ESA)的土壤水分海洋盐度(SMOS)卫星和特殊传感器微波成像仪/声纳(SSMIS)的海冰浓度数据得到的海冰厚度数据与数值模型。通过三个不同的同化实验评估了整体强迫中隐含的大气不确定性的影响。前两个实验使用单个确定性强迫数据集和不同的遗忘因子来增加整体扩散。第三个实验使用UKMO大气整体预报系统的23个成员。它避免了额外的整体通货膨胀,因此更易于实施。正如预期的那样,在所有三个实验中,模型数据的失配都大大减少了,但是与合奏强迫相比,与强制确定的实验相比,强迫合奏预测海冰浓度和厚度的误差较小。这很可能是因为集合强迫导致模型状态集合更合理的传播,这代表了模型不确定性并产生了更好的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号