首页> 外文OA文献 >Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method
【2h】

Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method

机译:应用伴随方法的零维生态系统模型参数估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Assimilation experiments with data from the Bermuda Atlantic Time-series Study (BATS, 1989¯1993) were performed with a simple mixed-layer ecosystem model of dissolvedinorganic nitrogen (N), phytoplankton (P) and herbivorous zooplankton (H). Our aim is to optimize the biological model parameters, such that the misfits between model results andobservations are minimized. The utilized assimilation method is the variational adjoint technique, starting from a wide range of first-parameter guesses. A twin experiment displayedtwo kinds of solutions, when Gaussian noise was added to the model-generated data. The expected solution refers to the global minimum of the misfit model-data function, whereasthe other solution is biologically implausible and is associated with a local minimum. Experiments with real data showed either bottom-up or top-down controlled ecosystemdynamics, depending on the deep nutrient availability. To confine the solutions, an additional constraint on zooplankton biomass was added to the optimization procedure. Thisinclusion did not produce optimal model results that were consistent with observations. The modelled zooplankton biomass still exceeded the observations. From the model-datadiscrepancies systematic model errors could be determined, in particular when the chlorophyll concentration started to decline before primary production reached its maximum. Adirect comparision of measured 14C-production data with modelled phytoplankton production rates is inadequate at BATS, at least when a constant carbon to nitrogen C : N ratio isassumed for data assimilation.
机译:利用来自百慕大的大西洋时间序列研究(BATS,1989; 1993)的数据,采用溶解无机氮(N),浮游植物(P)和草食性浮游动物(H)的简单混合层生态系统模型进行了同化实验。我们的目标是优化生物学模型参数,以使模型结果和观测值之间的不匹配最小化。所利用的同化方法是变分伴随技术,它从各种各样的第一参数猜测开始。当将高斯噪声添加到模型生成的数据时,一个孪生实验显示了两种解决方案。预期解决方案是指失配模型数据功能的整体最小值,而另一种解决方案在生物学上是不可信的,并且与局部最小值相关。实际数据实验表明,取决于深层养分的可利用性,其控制方式是自下而上或自上而下。为了限制解决方案,将浮游生物生物量的其他约束条件添加到了优化程序中。此包含未产生与观察结果一致的最佳模型结果。建模的浮游动物生物量仍然超出了观测值。根据模型数据的差异,可以确定系统模型错误,尤其是当初级生产达到最大值之前叶绿素浓度开始下降时。在BATS上,至少当为数据同化假定碳氮比为C:N恒定时,所测得的14C产生数据与浮游植物生产率的直接比较是不够的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号