首页> 外文OA文献 >Retrieval of Antarctic sea-ice pressure ridge frequencies from ERS SAR imagery by means of in-situ laser profiling and usage of a neural network
【2h】

Retrieval of Antarctic sea-ice pressure ridge frequencies from ERS SAR imagery by means of in-situ laser profiling and usage of a neural network

机译:利用原位激光剖面和神经网络的应用,从ERs saR图像中反演南极海冰压力脊频率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Application of a neural network to ERS-SAR images to retrieve pressure ridge spatial frequencies is presented. For an independent dataset, the rms-error between the retrieved and the true ridge frequency as determined by means of laser profiling was about 5 ridges per kilometer, or 30%. The network is trained with results from in-situ laser profiling of ridge distributions and coincident SAR backscatter properties. The study focusses on summer data from the Bellingshausen, Amundsen and Weddell Seas in Antarctica, which were gathered in February 1994 and 1997. Pressure ridge frequencies varied from 3 to 30 ridges per kilometer between different regions, thus providing a wide range of training and test data for the algorithm development.From ERS-SAR images covering the area of the laser flights with a time difference of a few days at maximum, histograms of the backscatter coefficient s0 were extracted. Statistical parameters (e.g. mean, standard deviation, tail-to-mean ratio) were calculated from these distributions and compared with the results of the laser flights. Generally, the mean backscatter increases with a growing ridge frequency, and the signal range becomes narrower. However, these correlations are only poor, and improved results are obtained when the statistical parameters are combined to train the neural network.
机译:提出了将神经网络应用于ERS-SAR图像以检索压力脊空间频率的方法。对于一个独立的数据集,通过激光轮廓分析确定的测得的真实脊波频率与真脊波频率之间的均方根误差约为每公里5脊,即30%。利用对脊分布的原位激光轮廓分析和SAR反向散射特性一致的结果来训练网络。这项研究集中于1994年2月和1997年2月在南极洲的贝灵豪森,阿蒙森和韦德尔海收集的夏季数据。不同地区之间的压力脊频率从每公里3到30个脊变化,从而提供了广泛的训练和测试从覆盖激光飞行区域的ERS-SAR图像(最大时差为几天)中提取后向散射系数s0的直方图。从这些分布计算统计参数(例如,平均值,标准偏差,均值比),并将其与激光飞行的结果进行比较。通常,平均背向散射随着脊频率的增加而增加,并且信号范围变窄。但是,这些相关性很差,并且当组合统计参数以训练神经网络时,可以获得改善的结果。

著录项

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号