首页> 外文OA文献 >New Statistical Issues for Censored Survival Data: High-Dimensionality and Censored Covariate.
【2h】

New Statistical Issues for Censored Survival Data: High-Dimensionality and Censored Covariate.

机译:截尾生存数据的新统计问题:高维数和截尾协变量。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Censored survival data arise commonly in many areas including epidemiology, engineering and sociology. In this dissertation, we explore several emerging statistical issues for censored survival data.In Chapter 2, we consider finite sample propertiesof the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz. We first approximate the negative log partial likelihood function bya sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression, using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses.In Chapter 3, we consider generalized linear regression analysis with a left-censored covariate due to the limit of detection. The complete case analysis yields valid estimates forregression coefficients, but loses efficiency. Substitution methods are biased; the maximum likelihood method relies on parametric models for the unobservable tail probability, thus may suffer from model misspecification. To obtain robust and more efficient results, we propose a semiparametric likelihood-based approach for theregression parameters using an accelerated failure time model for the left-censored covariate. A two-stage estimation procedure isconsidered. The proposed method outperforms the existing methods in simulation studies. Technical conditions for asymptotic properties are provided.In Chapter 4, we consider longitudinal dataanalysis with a terminal event. The existing methods include the joint modeling approach and the marginal estimating equation approach, and both assume that the relationship between the response variable and a set of covariates is the same no matter whether the terminal event occurs or not. This assumption, however, is not reasonable for many longitudinal studies. Therefore we directly model event time as a covariate, which provides intuitive interpretation. When the terminal event times are right-censored, a semiparametric likelihood-based approach similar to Chapter 3 is proposed for the parameter estimations. The proposed method outperforms the complete case analysis in simulation studies and its asymptotic properties are provided.
机译:在许多领域,包括流行病学,工程学和社会学,通常都有经过审查的生存数据。本文探讨了删失生存数据的一些新兴统计问题。在第二章中,我们考虑了通过套索进行正则化高维Cox回归的有限样本性质。现有文献集中于具有Lipschitz损失函数的线性或广义线性模型,其中经验风险函数是独立且均匀分布(iid)损失的总和。但是,用于审查生存数据的负对数偏似然函数的求和既不是iid也不是Lipschitz。我们首先通过iid non-Lipschitz项的总和来近似对数偏似然函数,然后使用点状参数解决因缺乏iid Lipschitz损失而造成的困难,得出套索惩罚Cox回归的非渐进式oracle不等式。 ,由于检测的限制,我们考虑使用带有左删失协变量的广义线性回归分析。完整的案例分析可得出有效的回归系数估计值,但会降低效率。替代方法有偏见;最大似然法依赖参数模型获得不可观察的尾部概率,因此可能会遭受模型错误指定的困扰。为了获得鲁棒且更有效的结果,我们为左删失协变量使用了加速故障时间模型,为回归参数提出了一种基于半参数似然方法。考虑了两阶段的估计程序。拟议的方法优于模拟研究中的现有方法。提供了渐近性质的技术条件。在第四章​​中,我们考虑了带有终端事件的纵向数据分析。现有的方法包括联合建模方法和边际估计方程方法,并且两者都假定响应变量和一组协变量之间的关系是相同的,无论是否发生终端事件。但是,这种假设对于许多纵向研究而言并不合理。因此,我们将事件时间直接建模为协变量,从而提供直观的解释。当对终端事件时间进行右删失时,针对参数估计提出了一种类似于第三章的基于半参数似然的方法。在仿真研究中,所提出的方法优于完整的案例分析,并提供了其渐近性质。

著录项

  • 作者

    Kong Shengchun;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号