首页> 外文OA文献 >Accounting for Complex Sample Designs in Multiple Imputation Using the Finite Population Bayesian Bootstrap.
【2h】

Accounting for Complex Sample Designs in Multiple Imputation Using the Finite Population Bayesian Bootstrap.

机译:利用有限种群贝叶斯Bootstrap计算多重插补中的复样本设计。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiple imputation (MI) is a well-established method to handle item-nonresponse in sample surveys. Survey data obtained from complex sampling designs often involve features that include unequal probability of selection, clustering and stratification. Because sample design features are frequently related to survey outcomes of interest, the theory of MI requires including them in the imputation model to reduce the risks of model misspecification and hence to avoid biased inference. However, in practice multiply-imputed datasets from complex sample designs are typically imputed under simple random sampling assumptions and then analyzed using methods that account for the design features. Less commonly-used alternatives such as including case weights and/or dummy variables for strata and clusters as predictors typically require interaction terms for more complex estimators such as regression coefficients, and can be vulnerable to model misspecification and difficult to implement. We develop a simple two-step MI framework that accounts for complex sample designs using a weighted finite population Bayesian bootstrap (FPBB) method to generate draws from the posterior predictive distribution of the population. Imputations may then be performed assuming IID data. We propose different variations of the weighted FPBB for different sampling designs, and evaluate these methods using three studies. Simulation results show that the proposed methods have good frequentist properties and are robust to model misspecification compared to alternative approaches. We apply the proposed method to accommodate missing data in the Behavioral Risk Factor Surveillance System, the National Automotive Sampling System and the National Health and Nutrition Examination Survey III when estimating means, quantiles and a variety of model parameters.
机译:多重插补(MI)是一种成熟的方法,用于处理样本调查中的项目无响应。从复杂的抽样设计中获得的调查数据通常具有以下特征:选择,聚类和分层的概率不相等。因为样本设计特征经常与感兴趣的调查结果相关,所以MI理论要求将其包括在插补模型中,以减少模型错误指定的风险,从而避免有偏见的推断。但是,实际上,来自复杂样本设计的多重估算数据集通常是在简单的随机抽样假设下估算的,然后使用考虑设计特征的方法进行分析。较不常用的替代方法,例如包括案例权重和/或用于分层和聚类的虚拟变量作为预测变量,通常需要更复杂的估计变量(例如回归系数)的交互项,并且可能容易出现模型错误指定且难以实现。我们开发了一个简单的两步MI框架,该框架使用加权的有限人口贝叶斯自举(FPBB)方法来解释复杂的样本设计,从而从人口的后验预测分布中得出图。然后可以假设IID数据来执行插补。我们针对不同的采样设计提出了不同的加权FPBB变量,并使用三项研究评估了这些方法。仿真结果表明,与替代方法相比,所提出的方法具有良好的频繁性,并且对误指定模型具有鲁棒性。当估计均值,分位数和各种模型参数时,我们采用建议的方法来容纳行为风险因素监视系统,国家汽车抽样系统和国家健康与营养检查调查III中的缺失数据。

著录项

  • 作者

    Zhou Hanzhi;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号