首页> 外文OA文献 >Signal-Processing-Driven Integrated Circuits for Energy Constrained Microsystems.
【2h】

Signal-Processing-Driven Integrated Circuits for Energy Constrained Microsystems.

机译:用于能量约束微系统的信号处理驱动的集成电路。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The exponential growth in IC technology has enabled low-cost and increasingly capable wireless sensor nodes which provide a promising way forward to realize the vision of a trillion connected sensors in the next decade. However there are still many design challenges ahead to make these sensor nodes small,low-cost,secure,reliable and energy-efficient to name a few. Since the wireless nodes are expected to operate on a limited energy source or in some cases on harvested energy, the energy consumption of each building block is of prime importance to prolong the life of a sensor node. It has been found that the radio communication when active has been one of the highest power consuming modules on a sensor node. Low-energy protocols, e.g. processing the raw sensor data on-node, are more energy efficient for some applications as compared to transmitting the raw data over a wireless channel to a cloud server.In this thesis we explore signal processing techniques to realize a low power radio solution for wireless communication. Two prototype chips have been designed and their performance has been evaluated. The first prototype chip exploits compressed sensing for Ultra-Wide-Band (UWB) communication. UWB signals typically require a high ADC sampling rate in the receiver which results in high power consumption. Compressed sensing is demonstrated to relax the ADC sampling rate to save power. The second prototype chip exploits the sensitivity vs. power trade-off in a radio receiver to achieve iso-performance at lower power consumption and the time-varying wireless channel characteristics are used to adapt the sampling frequency of the receiver based on the SNR/Link quality of the communication channel, saving power, while maintaining the desired system performance.It is envisioned that embedded machine learning will play a key role in the integration of sensory data with prior knowledge for distributed intelligent sensing which might enable reduced wireless network traffic to a cloud server. A Near-Threshold hardware accelerator for arbitrary Bayesian network was designed for clique-tree message passing algorithm used for probabilistic inference. The hardware accelerator was benchmarked by the mid-size ALARM Bayesian network with total energy consumption of 76nJ for 250µS execution time.
机译:IC技术的迅猛发展已经实现了低成本和功能日益强大的无线传感器节点,这为在未来十年内实现万亿连接的传感器的愿景提供了一种有前途的方法。然而,要使这些传感器节点小型化,低成本,安全,可靠和节能等仍然存在许多设计挑战。由于预计无线节点将在有限的能源上运行,或者在某些情况下以收集的能源运行,因此,每个构建块的能耗对于延长传感器节点的寿命至关重要。已经发现,激活时的无线电通信已经成为传感器节点上功耗最高的模块之一。低能耗协议,例如与通过无线通道将原始数据传输到云服务器相比,在节点上处理原始传感器数据的能源效率更高。在本文中,我们探索了信号处理技术,以实现低功耗无线通信解决方案。 。已经设计了两个原型芯片,并对它们的性能进行了评估。第一款原型芯片将压缩感测用于超宽带(UWB)通信。 UWB信号通常在接收器中需要较高的ADC采样率,这会导致高功耗。演示了压缩感测可以放宽ADC采样率以节省功耗。第二个原型芯片利用无线电接收机中的灵敏度与功率之间的权衡来实现较低功耗下的同等性能,时变无线信道特性用于基于SNR / Link调整接收机的采样频率可以预见的是,嵌入式机器学习将在传感数据与分布式智能传感的先验知识的集成中发挥关键作用,这可能会减少无线网络流量到网络的通信,从而在保持所需的系统性能的同时发挥关键作用。云服务器。针对用于概率推断的集团树消息传递算法,设计了一种用于任意贝叶斯网络的近阈值硬件加速器。硬件加速器以中等规模的ALARM贝叶斯网络为基准,在250µS的执行时间内总能耗为76nJ。

著录项

  • 作者

    Khan Osama U.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号