首页> 外文OA文献 >Microbial Production of Cellulosic Isobutanol: Integrating Ecology and Evolutionary Approaches with Engineering.
【2h】

Microbial Production of Cellulosic Isobutanol: Integrating Ecology and Evolutionary Approaches with Engineering.

机译:纤维素异丁醇的微生物生产:将生态学和进化方法与工程相结合。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biofuels derived from lignocellulosic feedstocks are widely considered to be among the mostpromising renewable fuels that can be produced at a large scale and in a sustainable manner. However, many challenges exist. In this work, we aim to address two of them, which are interconnected under an overall goal of achieving efficient microbial conversion of lignocellulosic feedstocks to isobutanol, an advanced biofuel: i) enabling consolidated bioprocessing of lignocellulosic feedstocks to biofuels, through engineering synthetic microbial consortia; and ii) improving microbial stress tolerance, through genome evolution and engineering.Inspired by the versatility and robustness of ubiquitous natural microbial ecosystems, thefirst part of our work explores engineering synthetic multispecies microbial communities forcellulosic biofuel production. The required biochemical functions are divided between twospecialist organisms: the fungus Trichoderma reesei, which secretes cellulases to hydrolyzelignocellulose into soluble saccharides, and the bacterium Escherichia coli, which metabolizessoluble saccharides into isobutanol. We developed and experimentally validated a comprehensivemodeling framework, allowing us to elucidate key ecological interactions and develop mechanismsfor stabilizing and tuning population composition. To illustrate bioprocessing applications, wedemonstrate direct conversion of cellulosic feedstocks to isobutanol, achieving titers up to 1.86g/L and 62% of theoretical yield.In the second part, we leverage recent advances in DNA sequencing and genome engineeringtechnologies to decode and refactor microbial tolerance to isobutanol, a complex phenotype with a poorly understood genetic basis. We experimentally evolved isobutanol tolerant E. coli strains, and then used genome re-sequencing and functional dissection studies to reverse engineer mechanisms and genetic bases of tolerance. Next, we exploited our initial results to select genetic loci for targeted mutagenesis using Multiplex Automated Genome Engineering (MAGE), allowing us to refactor isobutanol tolerance and explore large genotype spaces for hyper-tolerant variants.In summary, we have integrated ecology and evolutionary approaches with engineering to develop novel microbial systems for biofuel production. Our synthetic microbial consortium approach provides key advantages over the conventional paradigm of engineering a single microbe (“super-bug”); in parallel, our genome evolution and engineering work has generated new insightsinto genetic and biochemical mechanisms underlying microbial tolerance to toxic chemicals.
机译:人们普遍认为,源自木质纤维素原料的生物燃料是最有前途的可再生燃料,可以大规模,可持续地生产。但是,存在许多挑战。在这项工作中,我们旨在解决其中两个问题,这两个问题是相互联系的,其总体目标是实现木质纤维素原料向高级生物燃料异丁醇的高效微生物转化:i)通过工程合成微生物联合体实现木质纤维素原料到生物燃料的整合生物处理;受普遍存在的天然微生物生态系统的多功能性和鲁棒性的启发,我们的第一部分研究了工程合成的多种生物微生物群落,以生产纤维素生物燃料。所需的生化功能分为两种专一性生物:里氏木霉属真菌,其将纤维素酶分泌为水解木质素纤维素,形成可溶性糖;以及大肠杆菌,其将可溶性糖代谢为异丁醇。我们开发并通过实验验证了一个全面的建模框架,从而使我们能够阐明关键的生态相互作用,并开发出稳定和调整人口组成的机制。为了说明生物加工的应用,我们演示了纤维素原料直接转化为异丁醇的效价,达到了1.86g / L的滴定度和理论收率的62%。第二部分,我们利用DNA测序和基因组工程技术的最新进展来解码和重构微生物耐受性异丁醇,一种复杂的表型,遗传基础尚不清楚。我们实验性地进化了耐异丁醇的大肠杆菌菌株,然后使用基因组重测序和功能解剖研究来逆转工程学机制和耐受性的遗传基础。接下来,我们利用初步结果通过多重自动化基因组工程(MAGE)选择用于靶向诱变的遗传基因座,从而使我们能够重构异丁醇耐受性并探索超耐受变异体的大型基因型空间。总之,我们整合了生态学和进化方法与工程部门一起开发用于生物燃料生产的新型微生物系统。与设计单个微生物的传统范例(“超级细菌”)相比,我们的合成微生物联合体方法具有关键优势。同时,我们的基因组进化和工程工作对微生物对毒性化学物质的耐受性产生了遗传和生化机制方面的新见解。

著录项

  • 作者

    Minty Jeremy J.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号