首页> 外文OA文献 >A new bi-parametric family of temporal transformations to improve the integration algorithms in the study of the orbital motion
【2h】

A new bi-parametric family of temporal transformations to improve the integration algorithms in the study of the orbital motion

机译:一种新的双参数时间变换族,用于改进轨道运动研究中的积分算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the fundamental problems in celestial mechanics is the study of the orbital motion of the bodies in the solar system. This study can be performed through analytical and numerical methods. Analytical methods are based on the well-known two-body problem; it is an integrable problem and its solution can be related to six constants called orbital elements. To obtain the solution of the perturbed problem, we can replace the constants of the two-body problem with the osculating elements given by the Lagrange planetary equations. Numerical methods are based on the direct integration of the motion equations. To test these methods we use the model of the two-body problem with high eccentricity.In this paper we define a new family of anomalies depending on two param- eters that includes the most common anomalies. This family allows to obtain more compact developments to be used in analytical series. This family can be also used to improve the efficiency of the numerical methods because defines a more suitable point distribution with the dynamics of the two-body problem.
机译:天体力学的基本问题之一是研究太阳系中物体的轨道运动。可以通过分析和数值方法进行这项研究。分析方法基于众所周知的两体问题。它是一个可积分的问题,其解决方案可以与称为轨道元素的六个常数相关。为了获得摄动问题的解,我们可以用拉格朗日行星方程式给出的密合元素代替二体问题的常数。数值方法基于运动方程的直接积分。为了测试这些方法,我们使用具有高偏心率的两体问题模型。在本文中,我们根据两个参数(包括最常见的异常)定义了一个新的异常家族。该系列允许获得更紧凑的开发,以用于分析系列。这个族也可以用来提高数值方法的效率,因为它通过两体问题的动力学定义了一个更合适的点分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号