首页> 外文OA文献 >Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex
【2h】

Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex

机译:利用复数分裂方法利用虚时间传播技术求解薛定谔特征值问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Schrödinger eigenvalue problem is solved with the imaginary time propagation technique. The separability of the Hamiltonian makes the problem suitable for the application of splitting methods. High order fractional time steps of order greater than two necessarily have negative steps and cannot be used for this class of diffusive problems. However, there exist methods which use fractional complex time steps with positive real parts which can be used with only a moderate increase in the computational cost. We analyze the performance of this class of schemes and propose new methods which outperform the existing ones in most cases. On the other hand, if the gradient of the potential is available, methods up to fourth order with real and positive coefficients exist. We also explore this case and propose new methods as well as sixth-order methods with complex coefficients. In particular, highly optimized sixth-order schemes for near integrable systems using positive real part complex coefficients with and without modified potentials are presented. A time-stepping variable order algorithm is proposed and numerical results show the enhanced efficiency of the new methods.
机译:Schrödinger特征值问题用虚假时间传播技术解决。哈密​​顿量的可分离性使该问题适合于分裂方法的应用。大于2的高阶分数时间步长必然具有负步长,因此不能用于此类扩散问题。但是,存在使用带有正实数部分的分数复杂时间步长的方法,这些方法只能在计算成本适度增加的情况下使用。我们分析此类方案的性能,并提出在大多数情况下优于现有方案的新方法。另一方面,如果电位梯度可用,则存在具有实系数和正系数的四阶方法。我们还探讨了这种情况,并提出了新方法以及具有复杂系数的六阶方法。特别是,提出了使用和不使用经过修改的电势的正实部复数系数用于近可积系统的高度优化的六阶方案。提出了一种时变变量阶算法,数值结果表明了新方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号