首页> 外文OA文献 >Data-driven exploration of 'spatial pattern-time process-driving forces' associations of SARS epidemic in Beijing, China
【2h】

Data-driven exploration of 'spatial pattern-time process-driving forces' associations of SARS epidemic in Beijing, China

机译:中国北京saRs疫情“空间模式 - 时间过程 - 驱动力”协会的数据驱动探索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background Severe Acute Respiratory Syndrome (SARS) was first reported in November 2002 in China, and spreads to about 30 countries over the next few months. While the characteristics of epidemic transmission are individually assessed, there are also important implicit associations between them. Methods A novel methodological framework was developed to overcome barriers among separate epidemic statistics and identify distinctive SARS features. Individual statistics were pair-wise linked in terms of their common features, and an integrative epidemic network was formulated. Results The study of associations between important SARS characteristics considerably enhanced the mainstream epidemic analysis and improved the understanding of the relationships between the observed epidemic determinants. The response of SARS transmission to various epidemic control factors was simulated, target areas were detected, critical time and relevant factors were determined. Conclusion It was shown that by properly accounting for links between different SARS statistics, a data-based analysis can efficiently reveal systematic associations between epidemic determinants. The analysis can predict the temporal trend of the epidemic given its spatial pattern, to estimate spatial exposure given temporal evolution, and to infer the driving forces of SARS transmission given the spatial exposure distribution.
机译:背景严重急性呼吸系统综合症(SARS)于2002年11月在中国首次报道,并在接下来的几个月中传播到大约30个国家。尽管对流行病传播的特征进行了单独评估,但它们之间也存在重要的隐式关联。方法建立了一个新的方法框架,以克服单独的流行病统计之间的障碍,并确定SARS的独特特征。个人统计依据其共同特征成对链接,并建立了一个综合流行网络。结果对SARS重要特征之间的关联进行的研究大大增强了主流流行病学分析,并增进了对所观察到的流行病决定因素之间关系的理解。模拟SARS传播对各种流行控制因素的响应,检测目标区域,确定关键时间和相关因素。结论表明,通过适当考虑不同SARS统计数据之间的联系,基于数据的分析可以有效揭示流行病决定因素之间的系统关联。该分析可以根据流行病的空间格局来预测该流行病的时间趋势,可以根据时间演变来估算该病的空间暴露,并可以根据给定的空间暴露分布来推断SARS传播的驱动力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号