首页> 外文OA文献 >Modeling and Compensation of Transceiver Non-Reciprocity in TDD Multi-Antenna Base-Station
【2h】

Modeling and Compensation of Transceiver Non-Reciprocity in TDD Multi-Antenna Base-Station

机译:TDD多天线基站中收发器非互易性的建模与补偿

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to the increasing demands for higher system capacity, higher data rates and better quality of service in wireless networks, advanced techniques that improve wireless link reliability and spectral efficiency are introduced. This includes different multi-antenna technologies, in particular multi-user (MU) MIMO-OFDM. In MU MIMO-OFDM systems, base-station with multiple antennas communicates simultaneously with multiple users over a given time-frequency resource. In downlink transmission, base-station transmits multiple data streams through its antennas towards the user devices. In uplink transmission, the user equipment send in parallel multiple data streams towards the base-station. In general, channel non-reciprocity is a very important factor in cellular communications, in particular in precoded MU MIMO-OFDM systems adopting time division duplexing (TDD). Based on the channel reciprocity principle, the channel state information at base-station for the downlink transmission can be determined through estimating the uplink channels. In practice, however, there are always unavoidable frequency mismatch characteristics between transmitter and receiver. Frequency response mismatch can thus change the reciprocal nature of downlink and uplink channels. The impact of transceiver non-reciprocity at equipment on user side causes inter-stream interference which can be compensated using detection processing. The impact of transceiver non-reciprocity at base-station causes inter-user interference and degrades the system performance of MU MIMO-OFDM systems.To ensure the system reliability and high performance in case of transceiver non-reciprocity, some non-reciprocity estimation and compensation methods are required. The previous work has proposed the estimation-compensation framework that gives a flexible solution to restore the channel reciprocity. But there is a need to validate the findings and performance of the proposed estimation-compensation framework. The modeling of transceiver frequency response mismatch characteristics using actual measurement data has been carried out in this thesis research work. The actual measurement data comprises of one base-station with two antennas and two user equipment devices with single antenna. The estimated uplink and downlink channels from measurement data are used to compute the non-reciprocity matrix at base-station and at the equipment on user side after mathematical calculations. The normalized parameters for transceiver non-reciprocity matrices are extracted subcarrier-wise. The frequency-domain normalized non-reciprocity parameters are modeled as a FIR filter in the time-domain and the most energy concentrates then on few time-domain taps. The extracted parameters are mildly frequency-selective. The impact of extracted transceiver non-reciprocity is then analyzed by implementing a simulator of TDD precoded MU MIMO-OFDM system.In general, the frequency-selectivity implies that the reciprocity estimation and compensation is needed subcarrier-wise. The pilot-based estimation of non-reciprocity parameters at base-station is carried out in order to enhance the system performance. To estimate channel non-reciprocity parameters, a link between base-station and one of user equipment devices is assumed. The right choice of selecting the user is also important for noise reduction in estimation. For estimation, the DL transmission channel is modeled as a Rayleigh fading multipath channel with a given 7-tap channel power delay profile. The downlink data including sparsely located pilots at selected subcarriers is transmitted to the user through downlink channel without precoding. The downlink channel is then estimated at the user equipment side. This provides estimates only at the pilot subcarriers. Therefore, linear interpolation is used to obtain channel response estimates at the actual data subcarriers. The uplink pilot data is transmitted to base-station from user equipment through uplink channel. The uplink channel is obtained by estimated downlink channel in case of non-reciprocity parameters. Then, estimate of non-reciprocity at base-station is computed by using inverse processing and an interpolator. The estimated parameters are used as a compensator filter in order to compensate the channel non-reciprocity in the system.The simulated results show that the performance deviates from the ideal linear precoded MU MIMO-OFDM system because of non-reciprocity in case of both error control coded and uncoded channels. The compensated results in terms of coded and uncoded channel schemes have been evaluated which are closer to ideal linear precoded MU-MIMO OFDM system. These results show that the impact of non-reciprocity on system performance is less severe when a coded channel is deployed as compared to uncoded channel. The modeling of transceiver frequency response mismatch characteristics using actual measurement data proves that the proposed non-reciprocity model in the previous research work is close to reality.
机译:由于对无线网络中更高的系统容量,更高的数据速率和更好的服务质量的需求不断增加,因此引入了可提高无线链路可靠性和频谱效率的先进技术。这包括不同的多天线技术,尤其是多用户(MU)MIMO-OFDM。在MU MIMO-OFDM系统中,具有多个天线的基站通过给定的时频资源与多个用户同时通信。在下行链路传输中,基站通过其天线向用户设备传输多个数据流。在上行链路传输中,用户设备向基站并行发送多个数据流。通常,信道不可逆性是蜂窝通信中非常重要的因素,尤其是在采用时分双工(TDD)的预编码MU MIMO-OFDM系统中。基于信道互易原理,可以通过估计上行链路信道来确定基站的下行链路传输的信道状态信息。但是,实际上,发射机和接收机之间总是存在不可避免的频率失配特性。频率响应失配因此可以改变下行链路和上行链路信道的倒数本质。设备上的收发器不可逆性对用户侧的影响会导致流间干扰,可以使用检测处理来补偿这种干扰。基站收发器不可逆性的影响会引起用户间干扰,并降低MU MIMO-OFDM系统的系统性能。为确保系统可靠性和高性能,在收发器不可逆性的情况下,需要进行一些不可逆性估计和需要补偿方法。先前的工作提出了估计补偿框架,该框架提供了一种灵活的解决方案来恢复信道互易性。但是有必要验证所提出的估计补偿框架的发现和性能。本论文的研究工作是利用实际测量数据对收发器频率响应失配特性进行建模。实际测量数据包括一个带有两个天线的基站和两个带有单个天线的用户设备。根据测量数据估计的上行链路和下行链路信道用于在进行数学计算之后在基站和用户侧的设备上计算不可逆矩阵。收发器不可逆矩阵的归一化参数按子载波方式提取。频域归一化的非互易性参数在时域中被建模为FIR滤波器,并且能量最多的集中在少数时域抽头上。提取的参数具有适度的频率选择性。然后,通过实现TDD预编码MU MIMO-OFDM系统的仿真器来分析提取的收发器非互易性的影响。通常,频率选择性意味着需要在子载波上进行互易性估计和补偿。为了增强系统性能,对基站的不可逆性参数进行了基于飞行员的估计。为了估计信道不可逆性参数,假定基站与用户设备之一之间的链路。选择用户的正确选择对于降低估计中的噪声也很重要。为了进行估计,将DL传输信道建模为具有给定7抽头信道功率延迟曲线的瑞利衰落多径信道。包括在所选子载波处稀疏定位的导频的下行链路数据通过下行链路信道发送给用户而无需预编码。然后在用户设备侧估计下行链路信道。这仅在导频子载波上提供估计。因此,线性插值用于获得实际数据子载波处的信道响应估计。上行链路导频数据通过上行链路信道从用户设备发送到基站。在非互易参数的情况下,通过估计的下行链路信道获得上行链路信道。然后通过使用逆处理和内插器来计算基站的不可逆性的估计。估计的参数用作补偿器滤波器,以补偿系统中的信道不可逆性。仿真结果表明,由于两种情况下均存在不可逆性,因此性能会偏离理想的线性预编码MU MIMO-OFDM系统控制编码和未编码通道。已经评估了根据编码和未编码信道方案的补偿结果,该补偿结果更接近于理想的线性预编码MU-MIMO OFDM系统。这些结果表明,与未编码通道相比,部署编码通道时,不可逆性对系统性能的影响较小。利用实际测量数据对收发器频率响应失配特性进行建模证明,先前研究工作中提出的不可逆模型已接近实际。

著录项

  • 作者

    Kashif Asifa;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号