首页> 外文OA文献 >Optimization-based methods for nonlinear and hybrid systems verification
【2h】

Optimization-based methods for nonlinear and hybrid systems verification

机译:基于优化的非线性和混合系统验证方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex behaviors that can be exhibited by hybrid systems make the verification of such systems both important and challenging. Due to the infinite number of possibilities taken by the continuous state and the uncertainties in the system, exhaustive simulation is impossible, and also computing the set of reachable states is generally intractable. Nevertheless, the ever-increasing presence of hybrid systems in safety critical applications makes it evident that verification is an issue that has to be addressed.In this thesis, we develop a unified methodology for verifying temporal properties of continuous and hybrid systems. Our framework does not require explicit computation of reachable states. Instead, functions of state termed barrier certificates and density functions are used in conjunction with deductive inference to prove properties such as safety, reachability, eventuality, and their combinations. As a consequence, the proposed methods are directly applicable to systems with nonlinearity, uncertainty, and constraints. Moreover, it is possible to treat safety verification of stochastic systems in a similar fashion, by computing an upper-bound on the probability of reaching the unsafe states.We formulate verification using barrier certificates and density functions as convex programming problems. For systems with polynomial descriptions, sum of squares optimization can be used to construct polynomial barrier certificates and density functions in a computationally scalable manner. Some examples are presented to illustrate the use of the methods. At the end, the convexity of the problem formulation is also exploited to prove a converse theorem in safety verification using barrier certificates.
机译:混合系统可能表现出的复杂行为使这种系统的验证既重要又具有挑战性。由于连续状态所具有的无限可能性以及系统中的不确定性,因此不可能进行详尽的仿真,并且计算可到达状态的集合通常也很困难。然而,在安全关键应用中,混合系统的不断增加使验证显然是必须解决的问题。在本文中,我们开发了一种用于验证连续系统和混合系统的时间特性的统一方法。我们的框架不需要显式计算可达状态。取而代之的是,将状态函数(称为屏障证书)和密度函数与演绎推理结合使用,以证明诸如安全性,可到达性,可能以及它们的组合之类的属性。结果,所提出的方法直接适用于具有非线性,不确定性和约束的系统。此外,通过计算达到不安全状态的概率的上限,可以以类似的方式处理随机系统的安全验证。我们将屏障证明和密度函数作为凸规划问题来制定验证。对于具有多项式描述的系统,平方和优化可用于以计算可扩展的方式构造多项式屏障证书和密度函数。给出了一些示例以说明方法的使用。最后,还利用问题表述的凸性来证明使用屏障证书的安全验证中的逆定理。

著录项

  • 作者

    Prajna Stephen;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号