首页> 外文OA文献 >Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits ud
【2h】

Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits ud

机译:纳米加工用于片上光学悬浮,原子捕获和超导量子电路 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an "experimentally reasonable" repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Q = 5.8(1.1) x 10, representing more than an order of magnitude improvement over the conventional limits of SiO for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4π Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5$ fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.
机译:研究人员花费了数十年的时间改进和改进其制造更小,更精细调谐的高质量纳米光学元件的方法,其目标是使用光学器件对周围的环境进行更灵敏和准确的测量。在进行这些日益敏感的测量时,量子光学一直是一种公认​​的选择工具,这些测量一再推动量子力学提出的测量精度极限。量子光学的最新进展是将强大,高质量和完善的宏观实验系统与在洁净室中制造的高度可工程化的纳米级振荡器进行创造性的集成。但是,将大型系统与纳米级振荡器合并通常会要求它们具有极高的长宽比,这使它们极为脆弱,并且难以以“实验上合理的”可重复性,良率和高质量进行制造。在这项工作中,我们对研究进行了概述,其重点是与宏观光腔耦合的微观振荡器,其目标是在室温环境下将其冷却至运动的基态。机械谐振器的品质因数是各种传感应用和观察量子行为的重要品质因数。我们演示了一种通过使用光场来加强和捕获纳米级振荡器的特定运动模式,从而将微机械谐振器的品质因数推高到常规材料和制造限制之外的技术。光学力通过将大部分机械能存储在几乎无损耗的光势中来增加振荡频率,从而极大地稀释了材料耗散的影响。通过在光学驻波中放置130 nm厚的SiO摆,我们可以将摆的质心频率从6.2 kHz提高到145 kHz。相应的品质因数从其固有值增加到Q = 5.8(1.1)x 10的最终值增加了50倍,比摆式几何结构的SiO的常规极限值提高了多个数量级。我们的技术可能会为机械感测提供新的机会,并有助于观察此类机械系统中的量子行为。然后,我们将详细介绍用于生产高纵横比纳米结构的技术,并将其应用于广泛的量子光学实验中。能够以高精度制造这种纳米器件的能力为将宏观光学装置与光刻设计的纳米器件相结合的大量实验打开了大门。结合Kimble实验室中的原子俘获实验,我们使用这些技术来实现一种新的波导芯片,该芯片设计用于处理光刻图案化的纳米束上的超冷原子,该纳米束具有大的原子-光子耦合和接近4π的Steradian光学通道,用于冷却和俘获原子。我们描述了一种完全集成且可扩展的设计,其中冷原子在空间上与纳米串腔重叠,以观察d≈0.15的共振光学深度。纳米器件为将原子集成到光子电路以及在微观尺度上设计原子和光的量子态提供了新的可能性。然后,我们将描述与耦合到声子腔的超导微波谐振器有关的工作,以期建立一个用于量子受限的微波到光学波长转换的集成设备的目标。我们概述了用于制造低损耗高频机电系统的几种类型基板的特性。我们描述了一种在SiN膜上制造的机电系统,该膜由一个12 GHz超导LC谐振器组成,该谐振器电容耦合至声子纳米束的高频局部模式。使用我们的悬浮膜几何形状,我们将系统与具有明显损耗角正切的衬底隔离开来,从而将超导电路的寄生电容大大降低至≈2.5 $ fF。这为制造具有较大机电耦合的新型低损耗高频机电开辟了许多可能性。我们介绍了我们的基板研究,制造方法和器件表征。

著录项

  • 作者

    Norte Richard Alexander;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号