首页> 外文OA文献 >Particle motion in colloidal dispersions: applications to microrheology and nonequilibrium depletion interactions
【2h】

Particle motion in colloidal dispersions: applications to microrheology and nonequilibrium depletion interactions

机译:胶体分散体中的粒子运动:应用于微观流变学和非平衡耗尽相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the past decade, microrheology has burst onto the scene as a technique to interrogate and manipulate complex fluids and biological materials at the micro- and nano-meter scale. At the heart of microrheology is the use of colloidal 'probe' particles embedded in the material of interest; by tracking the motion of a probe one can ascertain rheological properties of the material. In this study, we propose and investigate a paradigmatic model for microrheology: an externally driven probe traveling through an otherwise quiescent colloidal dispersion. From the probe's motion one can infer a 'microviscosity' of the dispersion via application of Stokes drag law. Depending on the amplitude and time-dependence of the probe's movement, the linear or nonlinear (micro-)rheological response of the dispersion may be inferred: from steady, arbitrary-amplitude motion we compute a nonlinear microviscosity, while small-amplitude oscillatory motion yields a frequency-dependent (complex) microviscosity. These two microviscosities are shown, after appropriate scaling, to be in good agreement with their (macro)-rheological counterparts. Furthermore, we investigate the role played by the probe's shape --- sphere, rod, or disc --- in microrheological experiments.ududLastly, on a related theme, we consider two spherical probes translating in-line with equal velocities through a colloidal dispersion, as a model for depletion interactions out of equilibrium. The probes disturb the tranquility of the dispersion; in retaliation, the dispersion exerts a entropic (depletion) force on each probe, which depends on the velocity of the probes and their separation. When moving 'slowly' we recover the well-known equilibrium depletion attraction between probes. For 'rapid' motion, there is a large accumulation of particles in a thin boundary layer on the upstream side of the leading probe, whereas the trailing probe moves in a tunnel, or wake, of particle-free solvent created by the leading probe. Consequently, the entropic force on the trailing probe vanishes, while the force on the leading probe approaches a limiting value, equal to that for a single translating probe.
机译:在过去的十年中,微流变学已成为一种在微米和纳米尺度上询问和操纵复杂流体和生物材料的技术。微流变学的核心是使用嵌入感兴趣的材料中的胶体“探针”颗粒。通过跟踪探针的运动,可以确定材料的流变特性。在这项研究中,我们提出并研究了微观流变学的模型模型:外部驱动的探针穿过静止的胶体分散体。通过探针的运动,可以通过应用斯托克斯拖曳定律推断出分散液的“微粘度”。根据探头运动的幅度和时间相关性,可以推断出色散的线性或非线性(微)流变响应:从稳定的任意振幅运动中我们计算出非线性微粘度,而小振幅振荡运动产生频率相关(复杂)的微粘度。在适当缩放后,显示这两个微粘度与它们的(宏观)流变学对应物非常吻合。此外,我们在微观流变实验中研究了探针形状-球形,棒状或圆盘状-在微流变实验中的作用。 ud ud最后,在一个相关主题上,我们考虑了两个球形探针以相同的速度通过胶体分散体,作为失衡相互作用的模型。探针扰乱了分散体的安定性。为了进行报复,分散液会对每个探针施加熵(耗尽)力,这取决于探针的速度及其分离。当“缓慢地”移动时,我们恢复了探针之间众所周知的平衡耗尽吸引力。对于“快速”运动,在前导探针上游侧的薄边界层中有大量颗粒堆积,而尾随探针在前导探针产生的无颗粒溶剂的隧道或尾流中移动。因此,尾随探针上的熵力消失,而前导探针上的力接近极限值,该极限值等于单个平移探针的极限值。

著录项

  • 作者

    Khair Aditya Satish;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号