首页> 外文OA文献 >Distinct sensory representations of wind and near-field sound in the Drosophila brain
【2h】

Distinct sensory representations of wind and near-field sound in the Drosophila brain

机译:果蝇大脑中风和近场声音的不同感官表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Behavioral responses to wind are thought to play a critical role in controlling the dispersal and population genetics of wild Drosophila species, as well as their navigation in flight, but their underlying neurobiological basis is unknown. I show that Drosophila melanogaster, like wild-caught Drosophila strains, exhibits robust wind-induced suppression of locomotion (WISL), in response to air currents delivered at speeds normally encountered in nature. Furthermore, I identify wind-sensitive neurons in the Johnston’s organ (JO), an antennal mechanosensory structure previously implicated in near-field sound detection. Using Gal4 lines targeted to different subsets of JO neurons, and a genetically encoded calcium indicator, I show that wind and near-field sound (courtship song) activate distinct JO populations, which project to different regions of the antennal and mechanosensory motor center (AMMC) in the central brain. Selective genetic ablation of wind-sensitive JO neurons in the antenna abolishes WISL behavior, without impairing hearing. Different neuronal sub-populations within the wind-sensitive population, moreover, respond to different directions of arista deflection caused by airflow and project to different regions of the AMMC, providing a rudimentary map of wind direction in the brain. Importantly, sound- and wind-sensitive JO neurons exhibit different intrinsic response properties: the former are phasically activated by small, bidirectional displacements of the aristae, while the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar airflow, respectively. These data identify wind-sensitive neurons in JO, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements, using a common sensory organ.
机译:人们对风的行为反应在控制野生果蝇物种的扩散和种群遗传学以及它们在飞行中的航行中起着至关重要的作用,但是其潜在的神经生物学基础尚不清楚。我表明果蝇果蝇与野生果蝇菌株一样,表现出强大的风诱导运动抑制能力(WISL),以自然界中通常遇到的速度传递气流。此外,我在约翰斯顿的器官(JO)中识别出风敏感神经元,该器官先前与近场声音检测有关,是一种触角机械感官结构。使用针对JO神经元不同子集的Gal4线和遗传编码的钙指示剂,我证明了风和近场声(选拔曲)激活了不同的JO种群,这些种群投射到触角和机械感觉运动中心(AMMC)的不同区域)在大脑中部。天线中的风敏感JO神经元的选择性遗传消融可消除WISL行为,而不会损害听力。此外,在对风敏感的人群中,不同的神经元亚群会响应由气流引起的阿里斯塔偏转的不同方向,并投射到AMMC的不同区域,从而提供大脑中风向的基本图。重要的是,对声音和风敏感的JO神经元表现出不同的内在响应特性:前者是通过亚里斯多的双向双向位移来相位激活的,而后者是通过较大幅度的单向,静态挠曲来双向激活的。这些不同的固有特性非常适合分别检测近场声音和层流气流的振荡脉冲。这些数据可识别JO(主要与听力相关的结构)中的风敏感神经元,并揭示大脑如何使用共同的感觉器官来区分不同类型的空气粒子运动。

著录项

  • 作者

    Yorozu Suzuko;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号