首页> 外文OA文献 >Signal processing algorithms for MIMO radar
【2h】

Signal processing algorithms for MIMO radar

机译:mImO雷达信号处理算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Radar is a system that uses electromagnetic waves to detect, locate and measure the speed of reflecting objects such as aircraft, ships, spacecraft, vehicles, people, weather formations, and terrain. It transmits the electromagnetic waves into space and receives the echo signal reflected from objects. By applying signal processing algorithms on the reflected waveform, the reflecting objects can be detected. Furthermore, the location and the speed of the objects can also be estimated. Radar was originally an acronym for "RAdio Detection And Ranging". Today radar has become a standard English noun. Early radar development was mostly driven by military and military is still the dominant user and developer of radar technology. Military applications include surveillance, navigation, and weapon guidance. However, radar now has a broader range of applications including meteorological detection of precipitation, measuring ocean surface waves, air traffic control, police detection of speeding traffic, sports radar speed guns, and preventing car or ship collisions.ududRecently, the concept of MIMO radar has been proposed. The MIMO radar is a multiple antenna radar system which is capable of transmitting arbitrary waveform from each antenna element. In the traditional phased array radar, the transmitting antennas are limited to transmit scaled versions of the same waveform. However the MIMO radar allows the multiple antennas to transmit arbitrary waveforms. Like MIMO communications, MIMO radar offers a new paradigm for signal processing research. MIMO radar possesses significant potentials for fading mitigation, resolution enhancement, and interference and jamming suppression. Fully exploiting these potentials can result in significantly improved target detection, parameter estimation, target tracking and recognition performance. The MIMO radar technology has rapidly drawn considerable attention from many researchers. Several advantages of MIMO radar have been discovered by many different researchers such as increased diversity of the target information, excellent interference rejection capability, improved parameter identifiability, and enhanced flexibility for transmit beampattern design. The degrees of freedom introduced by MIMO radar improves the performance of the radar systems in many different aspects. However, it also generates some issues. It increases the number of dimensions of the received signals. Consequently, this increases the complexity of the receiver. Furthermore, the MIMO radar transmits an incoherent waveform on each of the transmitting antennas. This in general reduces the processing gain compared to the phased array radar. The multiple arbitrary waveforms also affects the range and Doppler resolution of the radar system.ududThe main contribution of this thesis is to study the signal processing issues in MIMO radar and propose novel algorithms for improving the MIMO radar system. In the first part of this thesis, we focus on the MIMO radar receiver algorithms. We first study the robustness of the beamformer used in MIMO radar receiver. It is known that the adaptive beamformer is very sensitive to the DOA (direction-of-arrival) mismatch. In MIMO radar, the aperture of the virtual array can be much larger than the physical receiving array in the SIMO radar. This makes the performance of the beamformer more sensitive to the DOA errors in the MIMO radar case. In this thesis, we propose an adaptive beamformer that is robust against the DOA mismatch. This method imposes constraints such that the magnitude responses of two angles exceed unity. Then a diagonal loading method is used to force the magnitude responses at the arrival angles between these two angles to exceed unity. Therefore the proposed method can always force the gains at a desired interval of angles to exceed a constant level while suppressing the interferences and noise. A closed form solution to the proposed minimization problem is introduced, and the diagonal loading factor can be computed systematically by a proposed algorithm. Numerical examples show that this method has an excellent SINR (signal to noise-plus-interference ratio) performance and a complexity comparable to the standard adaptive beamformer. We also study the space-time adaptive processing (STAP) for MIMO radar systems. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (phased array radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this thesis, we explore the clutter space and its rank in the MIMO radar. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). Using this representation, a new STAP algorithm is developed. It computes the clutter space using the PSWF and utilizes the block diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity.ududThe second half of the thesis focuses on the transmitted waveform design for MIMO radar systems. We first study the ambiguity function of the MIMO radar and the corresponding waveform design methods. In traditional (SIMO) radars, the ambiguity function of the transmitted pulse characterizes the compromise between range and Doppler resolutions. It is a major tool for studying and analyzing radar signals. The idea of ambiguity function has recently been extended to the case of MIMO radar. In this thesis, we derive several mathematical properties of the MIMO radar ambiguity function. These properties provide some insights into the MIMO radar waveform design. We also propose a new algorithm for designing the orthogonal frequency-hopping waveforms. This algorithm reduces the sidelobes in the corresponding MIMO radar ambiguity function and makes the energy of the ambiguity function spread evenly in the range and angular dimensions. Therefore the resolution of the MIMO radar system can be improved. In addition to designing the waveform for increasing the system resolution, we also consider the joint optimization of waveforms and receiving filters in the MIMO radar for the case of extended target in clutter. An extended target can be viewed as a collection of infinite number of point targets. The reflected waveform from a point target is just a delayed and scaled version of the transmitted waveform. However, the reflected waveform from an extended target is a convolved version of the transmitted waveform with a target spreading function. A novel iterative algorithm is proposed to optimize the waveforms and receiving filters such that the detection performance can be maximized. The corresponding iterative algorithms are also developed for the case where only the statistics or the uncertainty set of the target impulse response is available. These algorithms guarantee that the SINR performance improves in each iteration step. The numerical results show that the proposed iterative algorithms converge faster and also have significant better SINR performances than previously reported algorithms.ud
机译:雷达是一种使用电磁波检测,定位和测量反射物体(例如飞机,轮船,航天器,车辆,人,天气形式和地形)速度的系统。它会将电磁波发送到太空中,并接收从物体反射的回波信号。通过对反射波形应用信号处理算法,可以检测到反射物体。此外,还可以估计物体的位置和速度。雷达最初是“雷达探测和测距”的首字母缩写。今天,雷达已成为标准的英语名词。早期雷达的发展主要由军事推动,而军事仍然是雷达技术的主要用户和开发商。军事应用包括监视,导航和武器制导。但是,雷达现在具有更广泛的应用范围,包括降水的气象检测,测量海面波,空中交通管制,超速行驶的警察检测,运动型雷达测速枪以及防止汽车或船舶碰撞。 ud ud已经提出了MIMO雷达的方案。 MIMO雷达是一种多天线雷达系统,能够从每个天线元件发送任意波形。在传统的相控阵雷达中,发射天线仅限于发射相同波形的缩放版本。但是,MIMO雷达允许多个天线发送任意波形。像MIMO通信一样,MIMO雷达为信号处理研究提供了新的范例。 MIMO雷达具有减轻衰落,提高分辨率以及抑制干扰和干扰的巨大潜力。充分利用这些潜力可以显着改善目标检测,参数估计,目标跟踪和识别性能。 MIMO雷达技术迅速吸引了许多研究人员的关注。许多不同的研究人员已经发现MIMO雷达的几个优点,例如增加了目标信息的多样性,出色的抗干扰能力,改进的参数可识别性以及增强的发射波束模式设计灵活性。 MIMO雷达引入的自由度可在许多不同方面提高雷达系统的性能。但是,它也会产生一些问题。它增加了接收信号的维数。因此,这增加了接收器的复杂性。此外,MIMO雷达在每个发送天线上发送非相干波形。与相控阵雷达相比,这通常会降低处理增益。多个任意波形也会影响雷达系统的射程和多普勒分辨率。 ud ud本论文的主要贡献是研究MIMO雷达中的信号处理问题,并提出了改进MIMO雷达系统的新算法。在本文的第一部分中,我们重点研究MIMO雷达接收器算法。我们首先研究MIMO雷达接收机中使用的波束形成器的鲁棒性。已知自适应波束形成器对DOA(到达方向)失配非常敏感。在MIMO雷达中,虚拟阵列的孔径可能比SIMO雷达中的物理接收阵列大得多。这使得波束形成器的性能对MIMO雷达情况下的DOA误差更为敏感。在本文中,我们提出了一种自适应的波束形成器,该波束形成器对DOA不匹配具有鲁棒性。该方法施加了约束,使得两个角度的幅度响应超过了单位。然后使用对角线加载方法来迫使这两个角度之间的到达角度处的幅度响应超过单位。因此,所提出的方法可以总是在抑制干扰和噪声的同时,以期望的角度间隔迫使增益超过恒定水平。介绍了针对所提出的最小化问题的一种封闭形式的解决方案,该对角线加载因子可以通过所提出的算法来系统地计算。数值示例表明,该方法具有出色的SINR(信噪比与干扰比)性能,并且其复杂度可与标准自适应波束形成器相媲美。我们还研究了MIMO雷达系统的时空自适应处理(STAP)。稍作修改,最初为单输入多输出(SIMO)雷达(相控阵雷达)开发的STAP方法也可以在MIMO雷达中使用。然而,在MIMO雷达中,干扰杂波子空间的秩变得非常大,尤其是干扰子空间。它会影响STAP算法的复杂性和收敛性。在本文中,我们探讨了杂波空间及其在MIMO雷达中的等级。通过使用问题的几何形状而不是数据,可以使用扁球面波函数(PSWF)来表示杂波子空间。使用这种表示,开发了一种新的STAP算法。它使用PSWF计算杂波空间,并利用干扰协方差矩阵的块对角线属性。由于充分利用了协方差矩阵的几何形状和结构,该方法具有很好的SINR性能和较低的计算复杂度。本文的后半部分主要针对MIMO雷达系统的发射波形设计。我们首先研究MIMO雷达的模糊函数和相应的波形设计方法。在传统(SIMO)雷达中,发射脉冲的歧义函数表征了距离和多普勒分辨率之间的折衷。它是研究和分析雷达信号的主要工具。模糊函数的概念最近已扩展到MIMO雷达的情况。在本文中,我们推导了MIMO雷达模糊度函数的几个数学性质。这些特性为MIMO雷达波形设计提供了一些见识。我们还提出了一种用于设计正交跳频波形的新算法。该算法减少了对应的MIMO雷达模糊度函数中的旁瓣,并使模糊度函数的能量在范围和角度范围内均匀分布。因此,可以提高MIMO雷达系统的分辨率。除了设计用于提高系统分辨率的波形外,我们还考虑了在杂波扩展目标情况下,MIMO雷达中的波形和接收滤波器的联合优化。扩展目标可以看作是无限数量的点目标的集合。从点目标反射的波形只是传输波形的延迟和缩放版本。但是,来自扩展目标的反射波形是具有目标扩展功能的传输波形的卷积版本。提出了一种新颖的迭代算法来优化波形并接收滤波器,从而可以使检测性能最大化。还针对仅目标冲激响应的统计数据或不确定性集合可用的情况开发了相应的迭代算法。这些算法保证了在每个迭代步骤中SINR性能都会得到改善。数值结果表明,与以前报道的算法相比,所提出的迭代算法收敛速度更快,并且具有显着更好的SINR性能。

著录项

  • 作者

    Chen Chun-Yang;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号