首页> 外文学位 >Signal Processing Algorithms for MIMO Radar.
【24h】

Signal Processing Algorithms for MIMO Radar.

机译:MIMO雷达的信号处理算法。

获取原文
获取原文并翻译 | 示例

摘要

The main contribution of this thesis is to study the signal processing issues in MIMO radar and propose novel algorithms for improving the MIMO radar system. In the first part of this thesis, we focus on the MIMO radar receiver algorithms. We first study the robustness of the beamformer used in MIMO radar receiver. It is known that the adaptive beamformer is very sensitive to the DOA (direction-of-arrival) mismatch. In MIMO radar, the aperture of the virtual array can be much larger than the physical receiving array in the SIMO radar. This makes the performance of the beamformer more sensitive to the DOA errors in the MIMO radar case. In this thesis, we propose an adaptive beamformer that is robust against the DOA mismatch. This method imposes constraints such that the magnitude responses of two angles exceed unity. Then a diagonal loading method is used to force the magnitude responses at the arrival angles between these two angles to exceed unity. Therefore the proposed method can always force the gains at a desired interval of angles to exceed a constant level while suppressing the interferences and noise. A closed form solution to the proposed minimization problem is introduced, and the diagonal loading factor can be computed systematically by a proposed algorithm. Numerical examples show that this method has an excellent SINR (signal to noise-plus-interference ratio) performance and a complexity comparable to the standard adaptive beamformer. We also study the space-time adaptive processing (STAP) for MIMO radar systems. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (phased array radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this thesis, we explore the clutter space and its rank in the MIMO radar. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). Using this representation, a new STAP algorithm is developed. It computes the clutter space using the PSWF and utilizes the block diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity.;The second half of the thesis focuses on the transmitted waveform design for MIMO radar systems. We first study the ambiguity function of the MIMO radar and the corresponding waveform design methods. In traditional (SIMO) radars, the ambiguity function of the transmitted pulse characterizes the compromise between range and Doppler resolutions. It is a major tool for studying and analyzing radar signals. The idea of ambiguity function has recently been extended to the case of MIMO radar. In this thesis, we derive several mathematical properties of the MIMO radar ambiguity function. These properties provide some insights into the MIMO radar waveform design. We also propose a new algorithm for designing the orthogonal frequency-hopping waveforms. This algorithm reduces the sidelobes in the corresponding MIMO radar ambiguity function and makes the energy of the ambiguity function spread evenly in the range and angular dimensions. Therefore the resolution of the MIMO radar system can be improved. In addition to designing the waveform for increasing the system resolution, we also consider the joint optimization of waveforms and receiving filters in the MIMO radar for the case of extended target in clutter. An extended target can be viewed as a collection of infinite number of point targets. The reflected waveform from a point target is just a delayed and scaled version of the transmitted waveform. However, the reflected waveform from an extended target is a convolved version of the transmitted waveform with a target spreading function. A novel iterative algorithm is proposed to optimize the waveforms and receiving filters such that the detection performance can be maximized. The corresponding iterative algorithms are also developed for the case where only the statistics or the uncertainty set of the target impulse response is available. These algorithms guarantee that the SINR performance improves in each iteration step. The numerical results show that the proposed iterative algorithms converge faster and also have significant better SINR performances than previously reported algorithms. (Abstract shortened by UMI.).
机译:本文的主要工作是研究MIMO雷达中的信号处理问题,并提出改进MIMO雷达系统的新算法。在本文的第一部分中,我们重点研究MIMO雷达接收器算法。我们首先研究MIMO雷达接收机中使用的波束形成器的鲁棒性。已知自适应波束形成器对DOA(到达方向)失配非常敏感。在MIMO雷达中,虚拟阵列的孔径可能比SIMO雷达中的物理接收阵列大得多。这使得波束形成器的性能对MIMO雷达情况下的DOA误差更为敏感。在本文中,我们提出了一种自适应的波束形成器,该波束形成器对DOA不匹配具有鲁棒性。该方法施加了约束,使得两个角度的幅度响应超过了单位。然后使用对角线加载方法来迫使这两个角度之间的到达角度处的幅度响应超过单位。因此,所提出的方法可以总是在抑制干扰和噪声的同时,以期望的角度间隔迫使增益超过恒定水平。介绍了针对所提出的最小化问题的一种封闭形式的解决方案,该对角线加载因子可以通过所提出的算法来系统地计算。数值示例表明,该方法具有出色的SINR(信噪比与干扰比)性能,并且其复杂度可与标准自适应波束形成器相媲美。我们还研究了MIMO雷达系统的时空自适应处理(STAP)。稍作修改,最初为单输入多输出(SIMO)雷达(相控阵雷达)开发的STAP方法也可以在MIMO雷达中使用。然而,在MIMO雷达中,干扰杂波子空间的秩变得非常大,尤其是干扰子空间。它会影响STAP算法的复杂性和收敛性。在本文中,我们探讨了杂波空间及其在MIMO雷达中的等级。通过使用问题的几何形状而不是数据,可以使用扁球面波函数(PSWF)来表示杂波子空间。使用此表示,开发了新的STAP算法。它使用PSWF计算杂波空间,并利用干扰协方差矩阵的块对角线属性。由于充分利用了协方差矩阵的几何和结构,使得该方法具有很好的信噪比性能和较低的计算复杂度。本文的后半部分主要针对MIMO雷达系统的发射波形设计。我们首先研究MIMO雷达的模糊函数和相应的波形设计方法。在传统(SIMO)雷达中,发射脉冲的歧义函数表征了距离和多普勒分辨率之间的折衷。它是研究和分析雷达信号的主要工具。模糊函数的概念最近已扩展到MIMO雷达的情况。在本文中,我们推导了MIMO雷达模糊度函数的几个数学性质。这些特性为MIMO雷达波形设计提供了一些见识。我们还提出了一种用于设计正交跳频波形的新算法。该算法减少了对应的MIMO雷达模糊度函数中的旁瓣,并使模糊度函数的能量在范围和角度范围内均匀分布。因此,可以提高MIMO雷达系统的分辨率。除了设计用于提高系统分辨率的波形外,我们还考虑了在杂波扩展目标情况下,MIMO雷达中的波形和接收滤波器的联合优化。扩展目标可以看作是无限数量的点目标的集合。从点目标反射的波形只是传输波形的延迟和缩放版本。但是,来自扩展目标的反射波形是具有目标扩展功能的传输波形的卷积版本。提出了一种新颖的迭代算法来优化波形并接收滤波器,从而可以使检测性能最大化。还针对仅目标冲激响应的统计数据或不确定性集合可用的情况开发了相应的迭代算法。这些算法保证了在每个迭代步骤中SINR性能都会得到改善。数值结果表明,所提出的迭代算法收敛速度更快,并且比以前报道的算法具有明显更好的SINR性能。 (摘要由UMI缩短。)。

著录项

  • 作者

    Chen, Chun-Yang.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号