首页> 外文OA文献 >Millimeter-wave phased arrays in silicon
【2h】

Millimeter-wave phased arrays in silicon

机译:硅中的毫米波相控阵

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Integration of mm-wave multiple-antenna systems on silicon-based processes enables complex, low-cost systems for high-frequency communication and sensing applications. While individual silicon devices struggle to achieve the same performance as III-V semiconductor-based transistors at mm-wave frequencies, the benefits of integration, such as good component matching and near-zero incremental device cost, can be leveraged to achieve good system performance. This dissertation presents different techniques and architectures for integrating mm-wave phased arrays on commercial silicon process technologies by demonstrating phased-array transmitters and receivers at 24GHz, 60GHz, and 77GHz, in CMOS and SiGe BiCMOS processes.Initially, the tradeoffs of high-frequency systems are discussed in the context of Shannon capacity and the benefits of integrating phased arrays at such high frequencies are discussed in detail. An analysis of the output noise in a phased-array receiver in the presence of antenna coupling and input noise correlation is carried out and measurements on a discrete two-element array demonstrate the dependence of output noise on the phase-shift setting.The design of the first fully-integrated 24GHz phased-array transmitter using mainly 0.18[mu]m CMOS transistors is described. The four-element array adopts a centralized LO-path phase-shifting approach using a multi-phase VCO. The on-chip 19.2GHz VCO generates 16 equally spaced LO phases leading to 7 degree beam resolution for radiation normal to the array. The transmitter includes four on-chip CMOS power amplifiers, with outputs matched to 50 Ohms, that are each capable of generating up to 14.5dBm of output power at 24GHz. The array achieves a peak-to-null ratio of 23dB with four elements active and can support data rates of 500Mb/s on each channel (with BPSK modulation) while occupying 6.8mm x 2.1mm of die area.A high-resolution local LO-path phase-shifting architecture is presented as part of the first fully-integrated 77GHz phased-array transceiver in a SiGe BiCMOS process. The SiGe transceiver includes four transmit and four receive elements (including 77GHz LNA and PA), along with the LO frequency generation and distribution circuitry. The local LO-path phase-shifting scheme enables a robust distribution network that scales well with increasing frequency and/or number of elements, while providing high-resolution phase shifts. Each transmit element of the heterodyne transmitter generates +12.5dBm of output power at 77GHz, with a bandwidth of 2.5GHz leading to a four-element EIRP of 24.5dBm. Each on-chip PA has a maximum saturated power of +17.5dBm at 77GHz while the on-chip VCO achieves a phase noise of -95dBc/Hz@1MHz offset at 54GHz. The phased-array performance is measured using an internal test option and achieves 12dB peak-to-null ratio with two transmit and receive elements active.While the 24GHz and 77GHz array are multiple-input single-output systems, higher-order phase-shifting and combining techniques can be used to achieve arrays with multiple outputs, with beams focused on different directions concurrently. Toward this end, a 60GHz bidirectional RF-combined phased array front-end is implemented in SiGe BiCMOS, using a hybrid parallel/series phase-shift approach that reduces the requirements of the on-chip phase shifters, enabling RF signal combining. The four-element array enables simultaneous illumination of two angles of incidence and includes amplitude control, as well as continuous phase adjustment. The front-end has a noise figure lower than 6.9dB at 60GHz and the array achieves full spatial coverage with peak-to-null ratio higher than 25dB. The four-element front-end consumes 265mW and occupies 4.6mm2 of die area.
机译:在基于硅的工艺中集成毫米波多天线系统,可为高频通信和传感应用提供复杂的低成本系统。尽管各个硅器件都难以在毫米波频率上获得与基于III-V半导体的晶体管相同的性能,但可以利用集成带来的好处(例如良好的组件匹配和接近零的增量器件成本)来实现良好的系统性能。 。本文通过演示在CMOS和SiGe BiCMOS工艺中的24GHz,60GHz和77GHz的相控阵发射器和接收器,展示了用于在商用硅工艺技术上集成毫米波相控阵的不同技术和体系结构。在香农容量的背景下讨论了这些系统,并详细讨论了在如此高的频率下集成相控阵的好处。在存在天线耦合和输入噪声相关的情况下,对相控阵接收机中的输出噪声进行了分析,对离散的两元素阵列进行的测量证明了输出噪声对相移设置的依赖性。描述了第一款主要使用0.18μmCMOS晶体管的完全集成的24GHz相控阵发射机。四元件阵列采用集中式LO路径相移方法,该方法使用多相VCO。片上19.2GHz VCO产生16个等间隔的LO相,从而产生7度的光束分辨率,以实现垂直于阵列的辐射。该发射器包括四个片上CMOS功率放大器,其输出与50欧姆匹配,每个功率放大器在24GHz时都能产生高达14.5dBm的输出功率。该阵列在四个元件处于活动状态时可实现23dB的峰均比,并在占用6.8mm x 2.1mm芯片面积的情况下,每个通道(采用BPSK调制)可支持500Mb / s的数据速率。路径相移架构作为SiGe BiCMOS工艺中第一个完全集成的77GHz相控阵收发器的一部分提出。 SiGe收发器包括四个发射和四个接收元件(包括77GHz LNA和PA),以及LO频率生成和分配电路。本地LO路径相移方案可实现强大的配电网络,该网络可随频率和/或元件数量的增加而很好地扩展,同时提供高分辨率的相移。外差发射器的每个发射元件在77GHz时产生+ 12.5dBm的输出功率,带宽为2.5GHz,导致24.5dBm的四元素EIRP。每个片上功率放大器在77GHz时的最大饱和功率为+ 17.5dBm,而片上VCO在54GHz时的偏移为-95dBc / Hz @ 1MHz。相控阵性能是使用内部测试选件测量的,在两个发射和接收元件均处于活动状态时可实现12dB的峰均比.24GHz和77GHz阵列是多输入单输出系统,具有高阶相移结合技术可以用来实现具有多个输出的阵列,同时光束聚焦在不同方向上。为此,采用混合并行/串联相移方法在SiGe BiCMOS中实现了60GHz双向RF组合相控阵前端,可降低片上移相器的要求,从而实现RF信号组合。四元件阵列可以同时照射两个入射角,并且包括幅度控制以及连续相位调整。前端在60GHz时的噪声系数低于6.9dB,并且该阵列实现了全部空间覆盖,且峰均比高于25dB。四元件前端功耗为265mW,占芯片面积的4.6mm2。

著录项

  • 作者

    Natarajan Arun Sridhar;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号