首页> 外文OA文献 >Semiconductor optical microcavities for chip-based cavity QED
【2h】

Semiconductor optical microcavities for chip-based cavity QED

机译:用于基于芯片的腔QED的半导体光学微腔

摘要

Optical microcavities can be characterized by two key quantities: an effective mode volume Veff, which describes the per photon electric field strength within the cavity, and a quality factor Q, which describes the photon lifetime within the cavity. Cavities with a small Veff and a high Q offer the promise for applications in nonlinear optics, sensing, and cavity quantum electrodynamics (cavity QED). Chip-based devices are particularly appealing, as planar fabrication technology can be used to make optical structures on a semiconductor chip that confine light to wavelength-scale dimensions, thereby creating strong enough electric fields that even a single photon can have an appreciable interaction with matter. When combined with the potential for integration and scalability inherent to microphotonic structures created by planar fabrication techniques, these devices have enormous potential for future generations of experiments in cavity QED and quantum networks.This thesis is largely focused on the development of ultrasmall Veff, high-Q semiconductor optical microcavities. In particular, we present work that addresses two major topics of relevance when trying to observe coherent quantum interactions within these semiconductor-based systems: (1) the demonstration of low optical losses in a wavelength-scale microcavity, and (2) the development of an efficient optical channel through which the sub-micron-scale optical field in the microcavity can be accessed. The two microcavities of specific interest are planar photonic crystal defect resonators and microdisk resonators.The first part of this thesis details the development of photonic crystal defect microcavities. A momentum space analysis is used to design structures in graded square and hexagonal lattice photonic crystals that not only sustain high Qs and small Veffs, but are also relatively robust to imperfections. These designs are then implemented in a number of experiments, starting with device fabrication in an InAsP/InGaAsP multi-quantum-well material to create low-threshold lasers with Qs of 1.3x10^4, and followed by fabrication in a silicon-on-insulator system to create passive resonators with Qs as high as 4.0x10^4. In the latter experiments, an optical fiber taper waveguide is used to couple light into and out of the cavities, and we demonstrate its utility as an optical probe that provides spectral and spatial information about the cavity modes. For a cavity mode with Q ~ 4x10^4, we demonstrate mode localization data consistent with Veff ~ 0.9(λ/n)^3.In the second part of this thesis, we describe experiments in a GaAs/AlGaAs material containing self-assembled InAs quantum dots. Small diameter microdisk cavities are fabricated with Q ~ 3.6x10^5 and Veff ~ 6(λ/n)^3, and with Q ~ 1.2x10^5 and Veff ~ 2(λ/n)^3. These devices are used to create room-temperature, continuous-wave, optically pumped lasers with thresholds as low as 1μW of absorbed pump power. Optical fiber tapers are used to efficiently collect emitted light from the devices, and a laser differential efficiency as high as 16% is demonstrated. Furthermore, these microdisk cavities have the requisite combination of high Q and small Veff to enable strong coupling to a single InAs quantum dot, in that the achievable coupling rate between the quantum dot and a single photon in the cavity is predicted to exceed the decay rates within the system. Quantum master equation simulations of the expected behavior of such fiber-coupled devices are presented, and progress towards such cavity QED experiments is described.
机译:光学微腔可以通过两个关键参数来表征:有效模式体积Veff(描述腔内每个光子电场强度)和品质因数Q(描述腔内光子寿命)。具有低Veff和高Q的腔为非线性光学,传感和腔量子电动力学(腔QED)中的应用提供了希望。基于芯片的设备特别吸引人,因为可以使用平面制造技术在半导体芯片上制造将光限制在波长尺度范围内的光学结构,从而产生足够强的电场,甚至单个光子也可以与物质发生明显的相互作用。 。当结合平面制造技术所产生的微光子结构固有的集成和可扩展性潜力时,这些器件在空腔QED和量子网络中的下一代实验中具有巨大潜力。本文主要研究超小型Veff, Q半导体光学微腔。特别是,当我们尝试观察这些基于半导体的系统中的相干量子相互作用时,我们提出了涉及两个主要主题的工作:(1)在波长尺度微腔中的低光损耗的证明,以及(2)纳米技术的发展。一个有效的光通道,通过该通道可以访问微腔中的亚微米级光场。两个特别令人关注的微腔是平面光子晶体缺陷谐振器和微盘谐振器。本文的第一部分详细介绍了光子晶体缺陷微腔的发展。动量空间分析用于设计渐变方形和六边形晶格光子晶体中的结构,这些晶体不仅具有较高的Qs和较小的Veff,而且相对于缺陷也相对耐用。然后,在许多实验中实施这些设计,首先是在InAsP / InGaAsP多量子阱材料中制造器件,以创建Qs为1.3x10 ^ 4的低阈值激光器,然后在硅上制造硅。绝缘体系统以创建Qs高达4.0x10 ^ 4的无源谐振器。在后面的实验中,使用光纤锥形波导将光耦合进出腔,并且我们证明了其作为提供有关腔模的光谱和空间信息的光学探针的效用。对于Q〜4x10 ^ 4的腔模,我们证明了与Veff〜0.9(λ/ n)^ 3一致的模定位数据。在本文的第二部分,我们描述了在包含自组装GaAs / AlGaAs材料的实验InAs量子点。用Q〜3.6x10 ^ 5和Veff〜6(λ/ n)^ 3以及Q〜1.2x10 ^ 5和Veff〜2(λ/ n)^ 3制作小直径微盘腔。这些设备用于创建室温,连续波,光泵浦激光器,其吸收泵浦功率的阈值低至1μW。光纤锥度用于有效地收集从设备发出的光,并且证明了高达16%的激光微分效率。此外,这些微盘腔具有高Q和小Veff的必要组合,以实现与单个InAs量子点的牢固耦合,因为预计量子点与腔中单个光子之间可实现的耦合速率将超过衰减速率在系统内。提出了这种光纤耦合设备的预期行为的量子主方程模拟,并描述了这种腔QED实验的进展。

著录项

  • 作者

    Srinivasan Kartik;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号