首页> 外文学位 >Semiconductor optical microcavities for chip-based cavity QED.
【24h】

Semiconductor optical microcavities for chip-based cavity QED.

机译:半导体光微腔,用于基于芯片的腔QED。

获取原文
获取原文并翻译 | 示例

摘要

Planar fabrication technology can be used to make optical structures that confine light to wavelength-scale dimensions, thereby creating strong enough electric fields that even a single photon can have an appreciable interaction with matter. When combined with the potential for integration and scalability inherent to chip-based microphotonics, these devices have enormous potential for future experiments in cavity QED and quantum networks.; This thesis is largely focused on the development of high quality factor (Q), small mode volume (Veff) semiconductor optical microcavities. In particular, we present work that addresses two major topics of relevance when trying to observe coherent quantum interactions within these systems: (1) the demonstration of low optical losses in a wavelength-scale microcavity, and (2) the development of an efficient optical channel through which the sub-micron-scale microcavity field can be accessed. The two microcavities of interest are planar photonic crystal defect resonators and microdisk resonators.; The first part of this thesis details the development of photonic crystal microcavities. A momentum space analysis is used to design structures that sustain high Qs and small Veffs and are relatively robust to imperfections. These designs are implemented in InP-based multi-quantum-well lasers and passive Si resonators. For the latter, optical fiber taper waveguides are used to couple light into and out of the cavities, and Qs of 4 x 104 are demonstrated for devices with Veff ∼ 0.9(lambda/ n)3.; In the second part of this thesis, we describe experiments in a GaAs/AlGaAs material containing self-assembled InAs quantum dots. Small diameter microdisks are fabricated with Q ∼ 3.6 x 105 and Veff ∼ 6(lambda/n) 3, and Q ∼ 1.2 x 105 and Veff ∼ 2(lambda/n)3. These devices are used to create room temperature, continuous-wave, optically-pumped lasers with thresholds of 1 muW of absorbed pump power. Fiber tapers are used to efficiently collect the emission, and a laser differential efficiency of 16 % is demonstrated. Furthermore, these microdisks have the requisite combination of high Q and small Veff to enable 'strong coupling', where the coupling rate between a single quantum dot and a single photon in the cavity exceeds the system decay rates. Quantum master equation simulations of the expected behavior of such fiber-coupled devices are presented, and progress towards cavity QED experiments is described.
机译:平面制造技术可用于制造将光限制在波长尺度范围内的光学结构,从而产生足够强的电场,甚至单个光子也可以与物质发生明显的相互作用。当结合基于芯片的微光子所固有的集成和可扩展性的潜力时,这些器件具有在腔QED和量子网络中进行未来实验的巨大潜力。本文主要研究高品质因数(Q),小模量(Veff)半导体光学微腔的开发。特别是,当我们尝试观察这些系统中的相干量子相互作用时,我们提出了涉及两个主要主题的工作:(1)在波长尺度微腔中低光损耗的演示,(2)开发高效的光学可以访问亚微米级微腔场的通道。感兴趣的两个微腔是平面光子晶体缺陷谐振器和微盘谐振器。本文的第一部分详细介绍了光子晶体微腔的发展。动量空间分析用于设计维持高Qs和小Veff且对缺陷相对坚固的结构。这些设计在基于InP的多量子阱激光器和无源Si谐振器中实现。对于后者,使用光纤锥形波导将光耦合进出腔,对于Veff〜0.9(λ/ n)3的器件,Qs为4 x 104。在本文的第二部分,我们描述了在包含自组装InAs量子点的GaAs / AlGaAs材料中进行的实验。用Q〜3.6×105和Veff〜6(λ/ n)3,以及Q〜1.2×105和Veff〜2(λ/ n)3制作小直径微盘。这些设备用于创建室温,连续波,光泵浦激光器,其吸收泵浦功率的阈值为1μW。光纤锥度用于有效地收集发射,并且证明了16%的激光微分效率。此外,这些微型磁盘具有高Q和小Veff的必要组合,以实现“强耦合”,其中腔中单个量子点和单个光子之间的耦合速率超过了系统衰减速率。提出了这种光纤耦合设备的预期行为的量子主方程模拟,并描述了向腔QED实验的进展。

著录项

  • 作者

    Srinivasan, Kartik.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physics Condensed Matter.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 309 p.
  • 总页数 309
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号