首页> 美国政府科技报告 >Investigations of a Coherently Driven Semiconductor Optical Cavity QED System
【24h】

Investigations of a Coherently Driven Semiconductor Optical Cavity QED System

机译:相干驱动半导体光腔QED系统的研究

获取原文

摘要

Chip-based cavity quantum electrodynamics QED devices consisting of a self-assembled InAs quantum dot QD coupled to a high quality factor GaAs microdisk cavity are coherently probed through their optical channel using a fiber taper waveguide. We highlight one particularly important aspect of this all-fiber measurement setup, which is the accuracy to which the optical coupling level and optical losses are known relative to typical free-space excitation techniques. This allows for precise knowledge of the intracavity photon number and measurement of absolute transmitted and reflected signals. Resonant optical spectroscopy of the system under both weak and strong driving conditions are presented, which when compared with a quantum master equation model of the system allows for determination of the coherent coupling rate between QD exciton and optical cavity mode, the different levels of elastic and inelastic dephasing of the exciton state, and the position and orientation of the QD within the cavity. Pump-probe measurements are also performed in which a far off-resonant red-detuned control laser beam is introduced into the cavity. Rather than producing a measurable ac Stark shift in the exciton line of the QD, we find that this control beam induces a saturation of the resonant system response. The broad photoluminescence spectrum resulting from the presence of the control beam the cavity points to sub-band-gap absorption in the semiconductor, and the resulting free-carrier generation, as the likely source of system saturation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号