首页> 外文OA文献 >Human gesture classification by brute-force machine learning for exergaming in physiotherapy
【2h】

Human gesture classification by brute-force machine learning for exergaming in physiotherapy

机译:人体手势分类由蛮力机器学习物理治疗中的exergaming

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a novel approach for human gesture classification on skeletal data is proposed for the application of exergaming in physiotherapy. Unlike existing methods, we propose to use a general classifier like Random Forests to recognize dynamic gestures. The temporal dimension is handled afterwards by majority voting in a sliding window over the consecutive predictions of the classifier. The gestures can have partially similar postures, such that the classifier will decide on the dissimilar postures. This brute-force classification strategy is permitted, because dynamic human gestures show sufficient dissimilar postures. Online continuous human gesture recognition can classify dynamic gestures in an early stage, which is a crucial advantage when controlling a game by automatic gesture recognition. Also, ground truth can be easily obtained, since all postures in a gesture get the same label, without any discretization into consecutive postures. This way, new gestures can be easily added, which is advantageous in adaptive game development. We evaluate our strategy by a leave-one-subject-out cross-validation on a self-captured stealth game gesture dataset and the publicly available Microsoft Research Cambridge-12 Kinect (MSRC-12) dataset. On the first dataset we achieve an excellent accuracy rate of 96.72%. Furthermore, we show that Random Forests perform better than Support Vector Machines. On the second dataset we achieve an accuracy rate of 98.37%, which is on average 3.57% better then existing methods.
机译:在本文中,提出了一种基于骨骼数据的手势分类的新方法,用于锻炼中的锻炼。与现有方法不同,我们建议使用诸如随机森林之类的通用分类器来识别动态手势。随后,通过在分类器的连续预测上的滑动窗口中进行多数表决来处理时间维。姿势可以具有部分相似的姿势,使得分类器将决定不同的姿势。允许使用这种暴力分类策略,因为动态的人类手势显示出足够不同的姿势。在线连续人类手势识别可以在早期对动态手势进行分类,这在通过自动手势识别控制游戏时是至关重要的优势。另外,由于手势中的所有姿势都具有相同的标签,因此无需任何离散化为连续的姿势,就可以轻松获得地面真相。这样,可以轻松添加新手势,这在自适应游戏开发中是有利的。我们通过对自我捕获的隐身游戏手势数据集和公开可用的Microsoft Research Cambridge-12 Kinect(MSRC-12)数据集进行一次留一题交叉验证来评估我们的策略。在第一个数据集上,我们达到了96.72%的出色准确率。此外,我们证明了随机森林的性能要优于支持向量机。在第二个数据集上,我们达到了98.37%的准确率,比现有方法平均高3.57%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号