首页> 外文OA文献 >Bioflocs technology: an integrated system for the removal of nutrients and simultaneous production of feed in aquaculture
【2h】

Bioflocs technology: an integrated system for the removal of nutrients and simultaneous production of feed in aquaculture

机译:Bioflocs技术:一种用于去除养分和同时生产水产养殖饲料的综合系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Future development of intensive aquaculture must deal with its impacts on the environment in the form of water pollution and the use of fish oil and fish meal. The bioflocs technology simultaneously addresses both problems co-occurring with the further expansion of the industry. While maintaining good water quality within the aquaculture systems it produces additional feed for the cultured animals. In contrast to conventional water quality control techniques, the bioflocs technology offers a sustainable, economical and easy-to-implement alternative. Chapter 1 gives an overview of the literature concerning nitrogen removal techniques in aquaculture and bioflocs technology.In Chapter 2, the impact of the carbon source on the performance of biofloc reactors was studied. The carbon source influenced the capacity of the technique to control the water quality in the biofloc reactors and the nutritional properties of the flocs. The carbon source also affected the eukaryotic and prokaryotic community composition of the bioflocs, which offers great possibilities for fine-tuning of the technique, more specifically concerning water quality control, feed production and/or costs. This prime importance of the choice of carbon source was confirmed in two further studies (Chapter 3 and Chapter 4) in which bioflocs grown on different substrates were fed to giant freshwater prawn (Macrobrachium rosenbergii) postlarvae and white shrimp (Litopenaeus vannamei), respectively. In both studies, glycerol-grown bioflocs showed better results than glucose-grown bioflocs. The potential significance of these results calls for further studies on the use of bioflocs as a feed in aquaculture, both in freshwater and saline systems. Parameters to consider in the future are accessibility, palatability or attractiveness of the bioflocs towards the animals, amino acid composition, essential fatty acids content and cost of the used carbon source as well as the overall cost of the technology (especially compared to conventional biofilter systems and feeding costs). In addition to the environmental, economical and sustainable considerations addressed above, a more specific problem was studied in Chapter 5, where aquaculture animals are exposed to lower temperatures during winter, possibly leading to mass mortality in industrial ponds. Covering the ponds with either plastic sheets or glass allowed solar heating of the culture water (thereby reducing the temperature decrease) and permitted to minimize water exchange. The application of bioflocs technology resulted in maintenance of good water quality, concomitantly providing additional feed to the animals, tilapia (Oreochromis niloticus x Oreochromis aureus) without compromising survival, growth and condition factor of the cultured species.At this moment, the aquaculture industry is most importantly faced with mass mortalities due to infectious diseases. To conclude this work, a potential extra added value feature of the bioflocs technology was studied in Chapter 6. In this study, bioflocs were found to be able to protect brine shrimp (Artemia franciscana) larvae from pathogenic Vibrio harveyi. These results indicate that in addition to water quality control and extra in situ feed production, the technique also has potential to protect the cultured animals from infections with pathogenic bacteria, which are responsible for major economic losses in aquaculture. To conclude, the last chapter (Chapter 7) provides a brief discussion of the performed studies. Directions for future in depth studies are raised based on the studies performed in this work that might contribute to further sustainable development of aquaculture.
机译:集约化水产养殖的未来发展必须以水污染和使用鱼油和鱼粉的形式应对其对环境的影响。生物絮凝技术同时解决了随着行业的进一步发展而出现的两个问题。在保持水产养殖系统内良好水质的同时,还为养殖动物提供了额外的饲料。与传统的水质控制技术相比,生物絮凝技术提供了可持续,经济和易于实施的替代方案。第1章概述了有关水产养殖除氮技术和生物絮凝技术的文献。第2章研究了碳源对生物絮凝反应器性能的影响。碳源影响了控制生物絮凝反应器中水质和絮凝物营养特性的技术能力。碳源还影响了生物絮凝体的真核和原核生物群落组成,这为技术的微调提供了极大的可能性,尤其是在水质控制,饲料生产和/或成本方面。碳源选择的这一首要重要性在两项进一步的研究(第3章和第4章)中得到了证实,在该研究中,分别在不同底物上生长的生物絮凝剂被喂入了大型淡水虾(罗氏沼虾),幼虾和白虾(南美白对虾)。在两项研究中,甘油生长的生物絮凝剂比葡萄糖生长的生物絮凝剂显示出更好的结果。这些结果的潜在意义要求进一步研究将生物絮凝剂用作淡水和盐水系统中水产养殖的饲料。将来要考虑的参数是生物絮凝物对动物的可及性,适口性或吸引力,氨基酸组成,必需脂肪酸含量和所用碳源的成本以及技术的总体成本(尤其是与常规生物滤池系统相比)和饲养费用)。除了上面提到的环境,经济和可持续发展方面的考虑外,第5章还研究了一个更具体的问题,该问题中,水产养殖动物在冬季处于较低的温度下,可能导致工业池塘的大规模死亡。用塑料片或玻璃覆盖池塘,可以对养殖用水进行日光加热(从而降低温度降低),并减少水交换。生物絮凝技术的应用导致维持了良好的水质,同时为动物罗非鱼(Oreochromis niloticus x Oreochromis aureus)提供了额外的饲料,而又不影响养殖物种的生存,生长和条件因素。最重要的是,由于传染病而导致大规模死亡。为了完成这项工作,在第6章中研究了生物絮凝剂技术的潜在附加值特征。在这项研究中,发现生物絮凝剂能够保护卤水虾(Artemia franciscana)幼虫免受致病性哈维弧菌的侵害。这些结果表明,除了控制水质和增加原地饲料产量外,该技术还具有保护养殖动物免受致病菌感染的潜力,致病菌是造成水产养殖重大经济损失的原因。最后,最后一章(第7章)简要介绍了所进行的研究。在这项工作中进行的研究的基础上,提出了进一步深入研究的方向,这可能有助于水产养殖业的进一步可持续发展。

著录项

  • 作者

    Crab Roselien;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号