首页> 外文OA文献 >Asymptotic Behavior and Zero Distribution of Polynomials Orthogonal with Respect to Bessel Functions
【2h】

Asymptotic Behavior and Zero Distribution of Polynomials Orthogonal with Respect to Bessel Functions

机译:关于Bessel函数的多项式正交的渐近行为和零分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider polynomials PnPn orthogonal with respect to the weight JνJν on [0,∞)[0,∞) , where JνJν is the Bessel function of order νν . Asheim and Huybrechs considered these polynomials in connection with complex Gaussian quadrature for oscillatory integrals. They observed that the zeros of PnPn are complex and accumulate as n→∞n→∞ near the vertical line Rez=νπ2Rez=νπ2 . We prove this fact for the case 0≤ν≤1/20≤ν≤1/2 from strong asymptotic formulas that we derive for the polynomials PnPn in the complex plane. Our main tool is the Riemann–Hilbert problem for orthogonal polynomials, suitably modified to cover the present situation, and the Deift–Zhou steepest descent method. A major part of the work is devoted to the construction of a local parametrix at the origin, for which we give an existence proof that only works for ν≤1/2ν≤1/2 .
机译:我们考虑相对于[0,∞)[0,∞)上的权重JνJν正交的多项式PnPn,其中JνJν是νν阶的Bessel函数。 Asheim和Huybrechs考虑了这些多项式与振荡积分的复杂高斯正交关系。他们观察到PnPn的零点很复杂,并且在垂直线Rez =νπ2Rez=νπ2附近累积为n→∞n→∞。我们从复杂平面中多项式PnPn导出的强渐近公式中证明了0≤ν≤1/20≤ν≤1/ 2的情况。我们的主要工具是正交多项式的Riemann-Hilbert问题(经过适当修改以涵盖当前情况)以及Deift-Zhou最陡下降法。这项工作的大部分致力于在原点构造局部参量,为此我们给出了一个存在证明,即仅适用于ν≤1/2ν≤1/ 2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号