首页> 外文OA文献 >Outliers and conditional autoregressive heteroscedasticity in time series
【2h】

Outliers and conditional autoregressive heteroscedasticity in time series

机译:时间序列中的异常值和条件自回归异方差性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper reviews the literature on GARCH-type models proposed to represent the dynamic evolution of conditional variances. Effects of level outliers on the diagnostic and estimation of GARCH models are also studied. Both outliers and conditional heteroscedasticity can generate time series with excess kurtosis and autocorrelated squared observations. Consequently, both phenomena can be confused. However, since outliers are generated by unexpected events and the conditional variances are predictable, it is important to identify which one is producing the observed features in the data. We compare two alternative procedures for dealing with the simultaneous presence of outliers and conditional heteroscedasticity in time series. The first one is to clean the series of outliers before fitting a GARCH model. The second is to estimate first the GARCH model and then to clean of outliers by using the residuals adjusted by its conditional variance. It is shown that both approaches may result in different estimated conditional variances.
机译:本文回顾了有关GARCH类型模型的文献,这些模型旨在代表条件方差的动态演变。还研究了水平离群值对GARCH模型的诊断和估计的影响。离群值和条件异方差都可以生成带有峰度过高和自相关平方观测值的时间序列。因此,两种现象都可以混淆。但是,由于异常事件是由意外事件产生的,并且条件方差是可预测的,因此重要的是要确定哪个人在数据中产生了观察到的特征。我们比较了两种替代方法来处理时间序列中异常值和条件异方差的同时存在。第一个是在拟合GARCH模型之前清理一系列离群值。第二个方法是先估算GARCH模型,然后使用通过其条件方差调整的残差来清除异常值。结果表明,两种方法都可能导致不同的估计条件方差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号