首页> 外文OA文献 >Assessment of the mapping of fractional woody cover in southern African savannas using multi-temporal and polarimetric ALOS PALSAR L-band images
【2h】

Assessment of the mapping of fractional woody cover in southern African savannas using multi-temporal and polarimetric ALOS PALSAR L-band images

机译:使用多时间和极化aLOs paLsaR L波段图像评估南部非洲大草原分数木质覆盖的映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Woody vegetation cover affects several ecosystem processes including carbon and water cycling, energy fluxes, and fire regimes. In order to understand the dynamics of savanna ecosystems, information on the spatial distribution of woody vegetation over large areas is needed. In this study we sought to assess multi-temporal ALOS PALSAR L-band backscatter to map woody cover in southern African savannas. The SAR data were acquired from the JAXA archive, covering various modes and seasons between 2007 and 2010. We used high resolution airborne LiDAR data as reference data to interpret SAR parameters (including backscatter intensities and polarimetric decomposition components), to develop SAR-based models as well as to validate SAR-based woody cover maps. The LiDAR survey was carried out in April 2008 with the Carnegie Airborne Observatory (CAO, http://cao.ciw.edu). The highest correlations to the reference data were obtained from SAR backscatters of the dry season, followed by the wet season, and the end of the wet season. The volume components from polarimetric decompositions (Freeman-Durden, Van Zyl) were calculated for the end of wet season, and showed similar correlations to the LiDAR data, when compared to cross-polarized backscatters (HV). We observed increased correlation between the SAR and LiDAR datasets with an increase in the spatial scale at which datasets were integrated, with an optimum value at 50 m. We modeled woody cover using three scenarios: (1) a single date scenario (i.e., woody cover map based on a single SAR image), (2) a multi-seasonal scenario (i.e., woody cover map based on SAR images from the same year and different seasons, based on key phonological difference), and (3) a multi-annual scenario (i.e., woody cover map based on SAR data from different years). Predicted SAR-based woody cover map based on Fine Beam Dual Polarization dry season SAR backscatters of all years yielded the best performance with an R2 of 0.71 and RMSE of 7.88%. However, single dry season SAR backscatter achieved only a slightly lower accuracy (R2 = 0.66, RMSE = 8.45%) as multi-annual SAR data, suggesting that a single SAR scene from the dry season can also be used for woody cover mapping. Moreover, we investigated the impact of the number of samples on the model prediction performance and showed the benefits of a larger spatially explicit LiDAR dataset compared to much smaller number of samples as they can be collected in the field. Collectively, our results demonstrate that L-band backscatter shows promising sensitivity for the purposes of mapping woody cover in southern African savannas, particularly during the dry season leaf-off conditions.
机译:木本植物的植被覆盖影响了许多生态系统过程,包括碳和水循环,能量通量和火势。为了了解热带草原生态系统的动态,需要有关大面积木质植被空间分布的信息。在这项研究中,我们试图评估多时相ALOS PALSAR L波段后向散射,以绘制南部非洲大草原的木质覆盖图。 SAR数据是从JAXA档案库中获得的,涵盖了2007年至2010年之间的各种模式和季节。我们使用高分辨率机载LiDAR数据作为参考数据来解释SAR参数(包括反向散射强度和极化分解分量),以开发基于SAR的模型以及验证基于SAR的木质覆盖图。 LiDAR调查是在2008年4月与卡内基机载天文台(CAO,http://cao.ciw.edu)进行的。与参考数据的最高相关性是从干旱季节的SAR反向散射获得的,其次是雨季,然后是雨季的结束。与交叉极化背向散射(HV)相比,计算了湿季结束时来自极化分解的体积分量(Freeman-Durden,Van Zyl),并显示了与LiDAR数据相似的相关性。我们观察到SAR和LiDAR数据集之间的相关性随集成数据集的空间规模的增加而增加,最佳值为50 m。我们使用以下三种方案对木质覆盖物进行建模:(1)单日期方案(即,基于单个SAR图像的木质覆盖图),(2)多季节方案(即,基于相同SAR图像的木质覆盖图年份和不同季节,基于关键的语音差异),以及(3)多年情景(即,基于不同年份SAR数据的木质覆盖图)。基于所有年份细光束双极化干旱季节SAR背向散射的预测SAR木质覆盖图表现最佳,R2为0.71,RMSE为7.88%。但是,作为多年期SAR数据,单个干旱季节SAR的反向散射仅获得了稍低的精度(R2 = 0.66,RMSE = 8.45%),这表明干旱季节的单个SAR场景也可以用于木质覆盖图的绘制。此外,我们调查了样本数量对模型预测性能的影响,并显示了与在现场收集的样本数量少得多的情况相比,更大的空间显性LiDAR数据集的好处。总的来说,我们的结果表明,L波段后向散射显示出有希望的灵敏度,以用于绘制南部非洲大草原的木本覆盖图,特别是在旱季放散条件下。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号