首页> 外文期刊>Forests >Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna
【24h】

Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna

机译:使用陆地激光扫描仪和L波段ALOS PALSAR数据评估南非稀树草原地上木质生物量动力学

获取原文
           

摘要

The use of optical remote sensing data for savanna vegetation structure mapping is hindered by sparse and heterogeneous distribution of vegetation canopy, leading to near-similar spectral signatures among lifeforms. An additional challenge to optical sensors is the high cloud cover and unpredictable weather conditions. Longwave microwave data, with its low sensitivity to clouds addresses some of these problems, but many space borne studies are still limited by low quality structural reference data. Terrestrial laser scanning (TLS) derived canopy cover and height metrics can improve aboveground biomass (AGB) prediction at both plot and landscape level. To date, few studies have explored the strength of TLS for vegetation structural mapping, and particularly few focusing on savannas. In this study, we evaluate the potential of high resolution TLS-derived canopy cover and height metrics to estimate plot-level aboveground biomass, and to extrapolate to a landscape-wide biomass estimation using multi-temporal L-band Synthetic Aperture Radar (SAR) within a 9 km 2 area savanna in Kruger National Park (KNP). We inventoried 42 field plots in the wet season and computed AGB for each plot using site-specific allometry. Canopy cover, canopy height, and their product were regressed with plot-level AGB over the TLS-footprint, while SAR backscatter was used to model dry season biomass for the years 2007, 2008, 2009, and 2010 for the study area. The results from model validation showed a significant linear relationship between TLS-derived predictors with field biomass, p < 0.05 and adjusted R 2 ranging between 0.56 for SAR to 0.93 for the TLS-derived canopy cover and height. Log-transformed AGB yielded lower errors with TLS metrics compared with non-transformed AGB. An assessment of the backscatter based on root mean square error (RMSE) showed better AGB prediction with cross-polarized (RMSE = 6.6 t/ha) as opposed to co-polarized data (RMSE = 6.7 t/ha), attributed to volume scattering of woody vegetation along river valleys and streams. The AGB change analysis showed 32 ha (3.5%) of the 900 ha experienced AGB loses above an average of 5 t/ha per annum, which can mainly be attributed to the falling of trees by mega herbivores such as elephants. The study concludes that SAR data, especially L-band SAR, can be used in the detection of small changes in savanna vegetation over time.
机译:稀疏的和不均匀的植被冠层分布阻碍了光学遥感数据用于稀树草原植被结构图的绘制,从而导致生命形式之间的光谱特征相似。光学传感器的另一个挑战是高云量和不可预测的天气状况。长波微波数据对云的敏感性低,解决了其中的一些问题,但是许多航天研究仍然受到低质量结构参考数据的限制。地面激光扫描(TLS)得出的树冠覆盖和高度度量可以改善地块和景观水平的地上生物量(AGB)预测。迄今为止,很少有研究探索TLS在植被结构制图方面的优势,特别是很少关注热带稀树草原。在这项研究中,我们评估了高分辨率TLS来源的树冠覆盖和高度度量的潜力,以估计地块级地上生物量,并使用多时相L波段合成孔径雷达(SAR)推断到整个景观范围内的生物量估计在克鲁格国家公园(KNP)的9平方公里2大草原范围内。我们清查了雨季的42个田间样地,并使用特定地点的异速测量法计算了每个样地的AGB。在TLS足迹上,冠层覆盖度,冠层高度及其产品与地块级AGB进行了回归,而SAR反向散射用于模拟研究区域2007、2008、2009和2010年的旱季生物量。模型验证的结果显示,TLS预测变量与田间生物量之间存在显着线性关系,p <0.05,调整后的R 2介于SAR的0.56和TLS衍生的树冠覆盖与高度之间,为0.93。与未转换的AGB相比,对数转换的AGB的TLS度量标准产生的错误更少。基于均方根误差(RMSE)进行的反向散射评估显示,与交叉极化数据(RMSE = 6.7 t / ha)相比,交叉极化(RMSE = 6.6 t / ha)的AGB预测更好,河谷和溪流的木本植被的分布。 AGB变化分析显示,在经历的900公顷AGB损失中,有32公顷(3.5%)每年平均损失超过5吨/公顷,这主要归因于大型食草动物(例如大象)倒下的树木。该研究得出的结论是,SAR数据,尤其是L波段SAR,可用于检测随时间变化的热带稀树草原植被的细微变化。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号