首页> 外文OA文献 >Multi-Label Learning by Exploiting Label Dependency
【2h】

Multi-Label Learning by Exploiting Label Dependency

机译:利用标签依赖性实现多标签学习

摘要

In multi-label learning, each training example is associated with a set of labels and the task is to predict the proper label set for the unseen example. Due to the tremendous (exponential) number of possible label sets, the task of learning from multi-label examples is rather challenging. Therefore, the key to successful multi-label learning is how to effectively exploit correlations between different labels to facilitate the learning process. In this paper, we propose to use a Bayesian network structure to efficiently encode the condi- tional dependencies of the labels as well as the feature set, with the feature set as the common parent of all labels. To make it practical, we give an approximate yet efficient procedure to find such a network structure. With the help of this network, multi-label learning is decomposed into a series of single-label classification problems, where a classifier is constructed for each label by incorporating its parental labels as additional features. Label sets of unseen examples are predicted recursively according to the label ordering given by the network. Extensive experiments on a broad range of data sets validate the effectiveness of our approach against other well-established methods.
机译:在多标签学习中,每个训练示例都与一组标签相关联,并且任务是为看不见的示例预测适当的标签集。由于可能的标签集数量众多(指数级),因此从多标签示例中学习的任务颇具挑战性。因此,成功进行多标签学习的关键是如何有效利用不同标签之间的相关性以促进学习过程。在本文中,我们建议使用贝叶斯网络结构对标签以及特征集的条件依赖性进行有效编码,并将特征集作为所有标签的公共父代。为了使其实用,我们给出了一种近似而有效的过程来找到这样的网络结构。在该网络的帮助下,多标签学习被分解为一系列的单标签分类问题,其中通过将其父母标签作为附加功能来为每个标签构建分类器。根据网络给出的标签顺序,递归地预测未见示例的标签集。在广泛的数据集上进行的广泛实验证明了我们的方法相对于其他公认的方法的有效性。

著录项

  • 作者

    Zhang M.; Zhang K.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号