首页> 外文OA文献 >Analyse d’images multibandes et hyperbandes : stratégie de détection d’objets diffus
【2h】

Analyse d’images multibandes et hyperbandes : stratégie de détection d’objets diffus

机译:多频带和超频带图像分析:漫射物体检测策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Object detection and classification methods, supervised and unsupervised, are widely used in Multi/ hyper bands image processing whose spectrum of each spectral pixel is considered to be discrete (4 to 10 bands) for multi band images, or continuous (over hundreds of bands) for hyperband images. However, in some application frameworks such as analysis of galaxies in astronomy or identification of biological cells, etc., the lack of the learning base requires the use of unsupervised approaches that will remain effective. The basic criterion of these methods is looking for pixels having different spectral characteristics from the background, these pixels are named "anomalies". These are "outliers that deviate from other observations to the point of arousing suspicion of having been generated by other mechanism" (Hawkins, 1980). In this report, we present the "Anomalous Component pPursuit (ACP)", an unsupervised statistical method involves the detection and discrimination of the rare objects in a hyperspectral image. The cited method combines two approaches: hypothesis testing (HT) with a constant false alarm rate (CFAR) and Projection Pursuit (PP) algorithm based on the independant component analysis (ICA) with the kurtosis maximization criterion. This method is applied to synthetic hyperspectral images including extended objects or extended truncated objects at several levels of noise in order to evaluate the performance and robustness according to the noise level, and the different categories of objects.
机译:有监督和无监督的对象检测和分类方法被广泛用于多/超频带图像处理,对于多频带图像,每个频谱像素的光谱被认为是离散的(4至10个频带),或者是连续的(超过数百个频带)用于超带宽图像。但是,在某些应用程序框架中,例如天文学中的星系分析或生物细胞的识别等,缺乏学习基础要求使用将保持有效的无监督方法。这些方法的基本标准是寻找具有与背景不同的光谱特征的像素,这些像素被称为“异常”。这些是“偏离其他观察结果的异常点,引起人们怀疑是由其他机制产生的(Hawkins,1980)。”在此报告中,我们介绍了“异常分量p追踪(ACP)”,这是一种无监督的统计方法,涉及检测和辨别高光谱图像中的稀有物体。引用的方法结合了两种方法:具有恒定误报率(CFAR)的假设检验(HT)和基于峰度最大化准则的独立成分分析(ICA)的投影追踪(PP)算法。该方法适用于合成的高光谱图像,包括处于多个噪声级别的扩展对象或扩展的截断对象,以便根据噪声级别和对象的不同类别评估性能和鲁棒性。

著录项

  • 作者

    A. Ahmad;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fra
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号