首页> 外文OA文献 >Chemisorbed and physisorbed Structures for 1,10-Phenanthroline and Dipyrido3,2-a:2u27,3u27-cphenazine on Au(111)
【2h】

Chemisorbed and physisorbed Structures for 1,10-Phenanthroline and Dipyrido3,2-a:2u27,3u27-cphenazine on Au(111)

机译:1,10-菲咯啉和双吡啶3,2-a:2 u27,3 u27-c吩嗪在Au(111)上的化学吸附和物理吸附结构

摘要

Scanning tunneling microscopy (STM) images of 1,10-phenanthroline (PHEN) and dipyrido[3,2-a:2‘,3‘-c]phenazine (DPPZ) on Au(111) are recorded using both in situ and ex situ techniques. The images of PHEN depict regimes of physisorption and chemisorption, whereas DPPZ is only physisorbed. All physisorbed structures are not pitted and fluctuate dynamically, involving aligned (4 × 4) surface domains with short-range (ca. 20 molecules) order for PHEN but unaligned chains with medium-range (ca. 100 molecules) order for DPPZ. In contrast, the chemisorbed PHEN monolayers remain stable for days, are associated with surface pitting, and form a (4 × √13)R46° lattice with long-range order. The density of pitted atoms on large gold terraces is shown to match the density of chemisorbed molecules, suggesting that gold adatoms link PHEN to the surface. For PHEN, chemisorbed and physisorbed adsorbate structures are optimized using plane-wave density-functional theory (DFT) calculations for the surface structure. Realistic binding energies are then obtained adding dispersive corrections determined using complete-active-space self-consistent field calculations using second-order perturbation theory (CASPT2) applied to cluster-interaction models. A fine balance between the large adsorbate−adsorbate dispersive forces, adsorbate−surface dispersive forces, gold ligation energy, and surface mining energy is shown to dictate the observed phenomena, leading to high surface mobility and substrate/surface lattice incommensurability. Increasing the magnitude of the dispersive forces through use of DPPZ, rather than PHEN, to disturb this balance produced physisorbed monolayers without pits and/or surface registration but with much longer-range order. Analogies are drawn with similar but poorly understood processes involved in the binding of thiols to Au(111).
机译:使用原位和ex记录了在Au(111)上的1,10-菲咯啉(PHEN)和双嘧啶[3,2-a:2',3'-c]吩嗪(DPPZ)的扫描隧道显微镜(STM)图像现场技术。 PHEN的图像描绘了物理吸附和化学吸附的方式,而DPPZ仅被物理吸附。所有的物理吸附结构都不会出现凹坑并且不会动态波动,涉及PHEN时具有短距离(约20个分子)顺序的对齐(4×4)表面域,而DPPZ涉及中距离(约100个分子)顺序的未对齐链。相比之下,化学吸附的PHEN单层可保持稳定数天,并与表面点蚀相关,并形成具有长程有序的(4×√13)R46°晶格。大型金阶上的点蚀原子的密度与化学吸附分子的密度相匹配,这表明金原子将PHEN连接到表面。对于PHEN,使用表面结构的平面波密度泛函理论(DFT)计算来优化化学吸附和物理吸附的吸附物结构。然后,通过添加色散校正来获得逼真的结合能,该色散校正是使用完整的主动空间自洽场计算确定的,该计算使用了应用于簇相互作用模型的二阶扰动理论(CASPT2)。较大的吸附物-吸附物分散力,吸附物-表面分散力,金结扎能和表面采矿能之间的良好平衡表明了所观察到的现象,从而导致较高的表面迁移率和基底/表面晶格不可通约性。通过使用DPPZ而不是PHEN来增加分散力的大小,以扰乱这种平衡,生成的物理吸附单层没有凹坑和/或表面配准,但具有更长的有序范围。用与硫醇与Au(111)结合有关的相似但鲜为人知的过程进行类推。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号