首页> 外文OA文献 >Study and implementation of some tree drawing algorithms
【2h】

Study and implementation of some tree drawing algorithms

机译:一些树绘制算法的研究与实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graph drawing deals with the geometric representation of graphs [1]. Data representation problems that require graph models can be better understood when visualized with appropriate graph drawings. The typical data structure for modeling hierarchical information is a tree whose vertices represent entities and whose edges correspond to relationships between entities. Algorithms for drawing trees are typically based on some graph-theoretic insight into the structure of the tree. It is characterized by the fact that in the drawings produced, the nodes at the same distance from the root are horizontally aligned [1]. This level-based approach can be used for both binary and general trees. Algorithms based on this approach involve some issues that lead to aesthetically wider than necessary drawings. I implemented “A Naïve Tree Drawing Algorithm” [2] as part of an independent study. This will serve as a basis and an introduction to this proposed thesis. In this thesis, we develop some tree drawing algorithms and a planarity drawing algorithm in terms of constructing a new pseudocode for each algorithm. Also, we focus on the theoretical graphic insight to the structure of the tree by building a drawing application for each algorithm. These applications provide an important view of the properties of drawing trees. In addition, these algorithms are implemented in a GUI (JEdit) that reflects an efficient aesthetic drawing. The input graph is checked to verify that it is a tree. The user sees an error message otherwise. These algorithms allow the user to select the root in an input tree. This leads to a better understanding of the algorithms. Most of these algorithms calculate the levels of the tree and the number of the nodes in each level. These algorithms are : the “Recursive Algorithm for Binary Trees” from [3], which has many steps, the “A Node-Positioning Algorithm for General Trees” from [4], the “Area-Efficient Order-Preserving Planar Straight-Line Drawings of Ordered Trees” from Section 3 of [5], and “Planarity Drawing Algorithm” from Section 2 of [6].
机译:图形绘制处理图形的几何表示[1]。当使用适当的图形进行可视化时,可以更好地理解需要图形模型的数据表示问题。用于建模分层信息的典型数据结构是一棵树,其顶点表示实体,并且其边缘对应于实体之间的关系。绘制树的算法通常基于对树结构的一些图论洞察。其特征在于,在所产生的附图中,距根相同距离的节点是水平对齐的[1]。这种基于级别的方法可用于二进制树和常规树。基于这种方法的算法涉及一些问题,这些问题导致美学上比必要的图宽。作为独立研究的一部分,我实施了“朴素的树绘制算法” [2]。这将作为本论文的基础和简介。本文针对每种算法构造新的伪代码,开发了一些树绘制算法和平面度绘制算法。此外,我们通过为每种算法构建绘图应用程序,专注于对树结构的理论图形洞察。这些应用程序提供了绘图树属性的重要视图。另外,这些算法在反映有效美学图的GUI(JEdit)中实现。检查输入图以确认它是树。否则,用户会看到错误消息。这些算法允许用户在输入树中选择根。这样可以更好地理解算法。这些算法大多数都计算树的级别以及每个级别中的节点数。这些算法是:[3]中的“二叉树递归算法”,其中包含许多步骤; [4]中的“通用树的节点定位算法”;“区域有效的阶数保持平面直线” [5]第3节中的“有序树的图形”,和[6]第2节中的“平面图形算法”。

著录项

  • 作者

    Hussein Iman Y.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号